UNITE 2007 Technology Conference

Some Considerations for MCP Applications using Web Services

Michael S. Recant MGS, Inc.

Session MCP4027 1:30pm – 2:30pm Monday, September 10, 2007

MGS, Inc.

- Software Engineering, Product Development & Professional Services firm founded in 1986
- We provide products and services to solve business problems:
 - Software Engineering Services
 - Professional Services
 - Management Support Services
 - Consulting and Technical Services
 - Application Development Services
 - Product Development
 - Performance/Capacity Management
 - Web Services
 - MCP Client Access

Web Services

- In this presentation you will learn about ...
 - The "Vision" and the "Reality"
 - Services Oriented Architecture
 - The "Business Case"
 - General Web Service Technology
 - "MCP" Implementations
 - "Resiliency" Issues
 - Performance Considerations
 - Security Considerations

Web Services – The Vision

Goal

Make Internet program-to-program
 exchanges as easy as browsing the Web

Web Services – The Vision

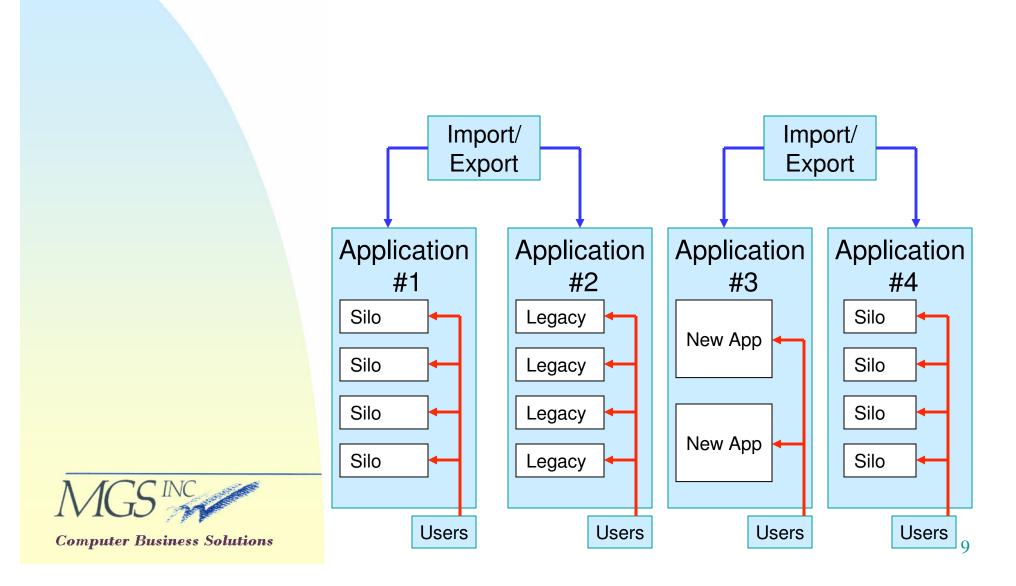
- Internet based
- Universal directory (like TCP/IP host name services)
- "Loose Coupling" between service provider and service consumer
 - Anonymous client
 - Service discovery
 - Flexible data content
 - asynchronous
- Charge per service
- Create a world-wide fabric of computing services (and commerce)

Web Services – The Reality

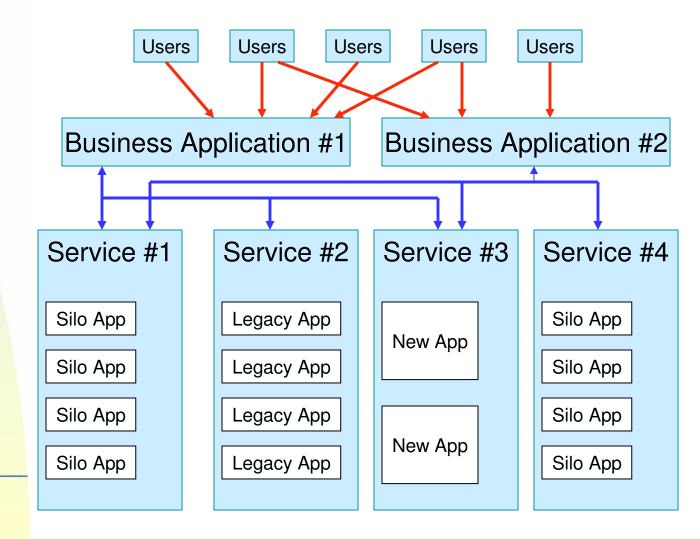
- Mission critical applications cannot depend on:
 - the Internet
 - "vended" services
 - the hope that someone is vending needed services
 - the hope that "vended" services operate exactly as the business requires
- Business interfaces do not benefit from:
 - Dynamic service discovery
 - Data flexibility

Web Services – The Reality

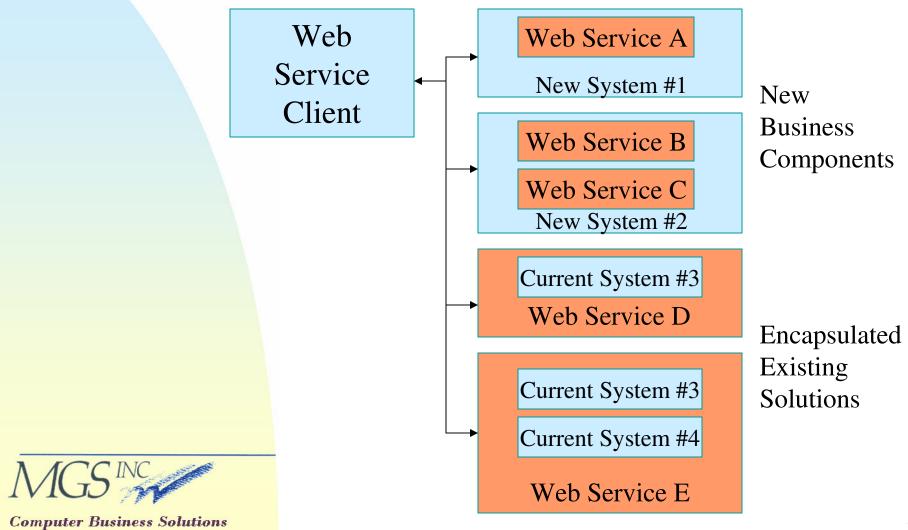
- However, the Web Services concept contains extremely powerful elements:
 - Simple, well-defined, standardsbased interface
 - Technology independent implementation
 - Each set of services has a description file
 - Integrated directory of service descriptions and documentation



Services Oriented Architecture


- Services Oriented Architecture (SOA)
 - Componentize new Enterprise business functions
 - Encapsulate existing business functions for easier access
 - IT Functionality now available as a set of objects that can be mixed and matched as needed
 - Application development done by architecting service consumers
 - Avoids tying a user to a specific application implementation
 - Avoids tying data to a specific application implementation

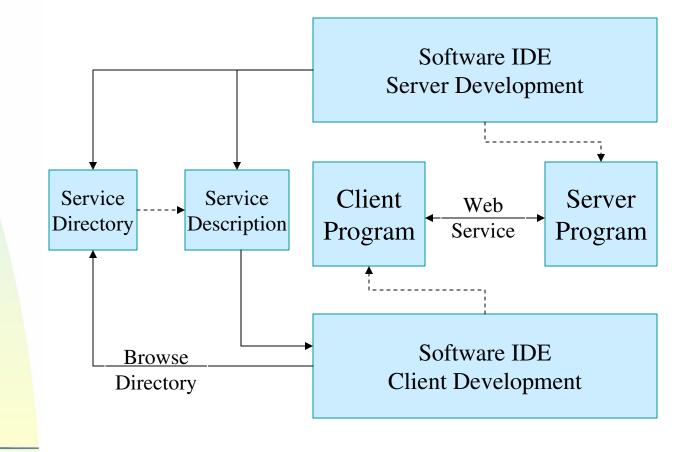
Traditional Architecture



Services Oriented Architecture

- Provides SOA building blocks
- Simpler and more flexible then "open" transaction protocols
 - EDI Electronic Data Interchange
 - DTP Distributed Transaction Processing (OLTP)
- Not technology dependent
 - RPC Remote Procedure Calls
 - DCOM Distributed Component Object Model
 - RMI Remote Method Invocation
 - CORBA Common Object Request Broker Architecture

- Built on proven Internet communications standards
 - HTTP HyperText Transfer Protocol
 - SOAP protocol
 - XML eXtensible Markup Language
- Includes service description and service directory
 - WSDL Web Services Description Language
 - UDDI Universal Description, Discovery and Integration



- Supported by software IDEs
 - Discovery of service
 - Automatic creation of Web Services client objects
 - Web Services Server object support
 - WSDL generation
 - UDDI update
 - Server program

- Supported by software IDEs
 - Included as part of the application framework
 - Microsoft .NET
 - Sun Microsystems J2EE
 - Unisys EAE (AB Suite)
 - Support for MCP 3GL Applications
 - MGS-Web
 - Unisys ePortal
 - SBG Web Services Gateway

- Abstracts out business functionality
 - Creates machine (technology) independent functionality
 - Indirect reference to service
 - Trivial to re-locate the business function or functions
 - Improved scalability
 - Improved ability to re-host

- Leverage existing business functionality
 - Rewrites are expensive
 - Redesigns are even more expensive
 - Placing a Web Services envelope around existing functionality is relatively inexpensive
 - Preserves investment in known, reliable business solutions

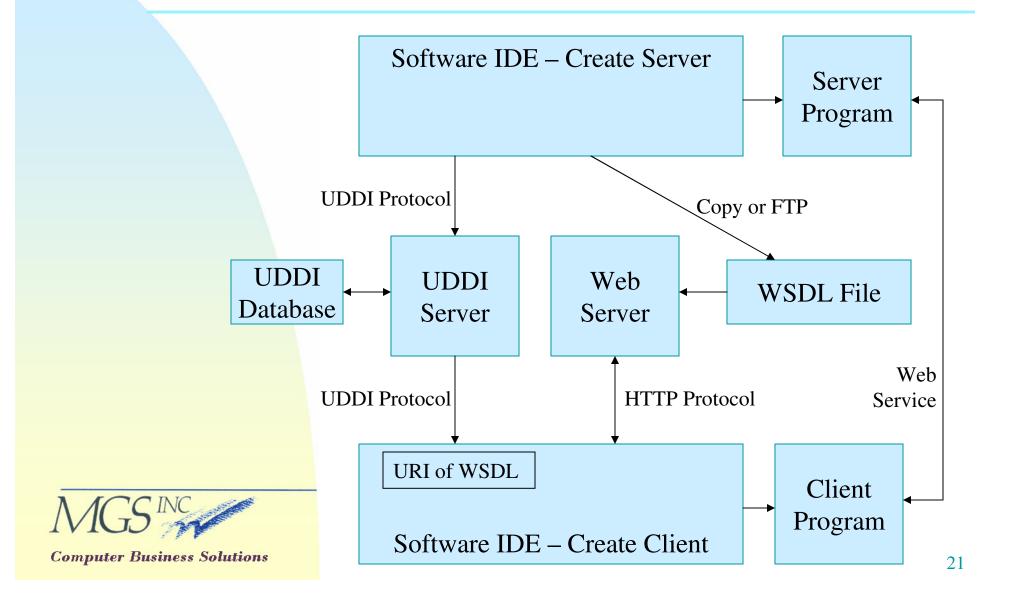
Web Services - Technology

Development components:

- Business function (application)
- Web Service definition (WSDL)
- Web Service directory (UDDI)
- Web Service enabled IDE
 - UDDI browser
 - Create client objects from WSDL
 - Create Web Services servers

Runtime components

- Client application program
- HTTP or HTTPS Server
- SOAP envelope
- XML data request/response
- Server application program



Web Services- Technology

- Directory contains Web Service description and documentation
 - UDDI Universal Description,
 Discovery and Integration
 - WSDL Web Services Description Language
- UDDI specifies location of the Web Service description
 - For use with HTTP
 - Includes web server host name
 - Includes WSDL name

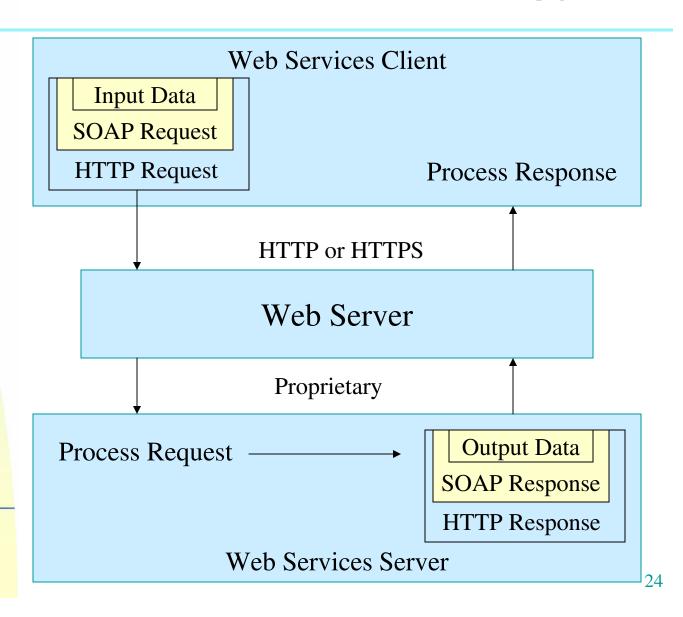
Web Services- Technology

Web Services- Technology

WSDL File Excerpt:

```
<message name="WSTEST_SCRN01">
 <part name="Trancode" type="xsd:string" />
 <part name="Input_data" type="xsd:string" />
</message>
<message name="WSTEST_SCRN01Response">
 <part name="Trancode" type="xsd:string" />
 <part name="Input_data" type="xsd:string" />
 <part name="statusLine" type="xsd:string" />
</message>
<service name="COMSWebServices">
 <documentation>Access COMS applications via Web Services
 </documentation>
  <port name="WSTEST" binding="wsdl:WSTESTHttpBinding">
  <soap:address location="http://laptop1mcp/COMSWebServices/" />
  </port>
</service>
```


Web Services – Technology


- Web Services is built on Internet communications standards
 - HTTP HyperText Transfer Protocol
 - SOAP protocol
 - XML eXtensible Markup Language
- Web service is addressed with the server's URI obtained from the WSDL

Web Services – Technology

Indicates
XML
Encoding

Web Services – Technology

```
SOAP Request:
<soap:Envelope>
 <soap:Body>
  <tns:WSTEST SCRN01>
   <Trancode>SCRN01</Trancode>
   <InputData>lower case letters/InputData>
  </tns:WSTEST SCRN01>
 </soap:Body>
</soap:Envelope>
SOAP Response:
<soap:Envelope>
 <soap:Body>
  <tns:WSTEST_SCRN01Response>
   <Trancode>SCRN01</Trancode>
   <InputData>LOWER CASE LETTERS</inputData>
   <statusLine />
  /tns:WSTEST_SCRN01Response>
 </soap:Body>
</soap:Envelope>
```

Web Services - MCP

MCP Web Services Server

- Allow MCP functionality to be easily accessed from the rest of the Enterprise
- Can be done with minimal/no MCP code changes
- Extends value of corporate investment in MCP environment
- Allows MCP functionality to migrate to an Service Oriented Architecture (SOA)

MCP Web Services Client

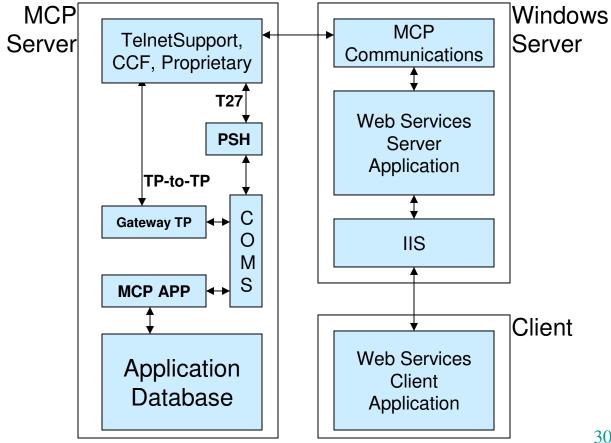
 Web Services Client interface allows MCP environment to use existing Enterprise SOA functionality

Web Services - MCP

3GL Support

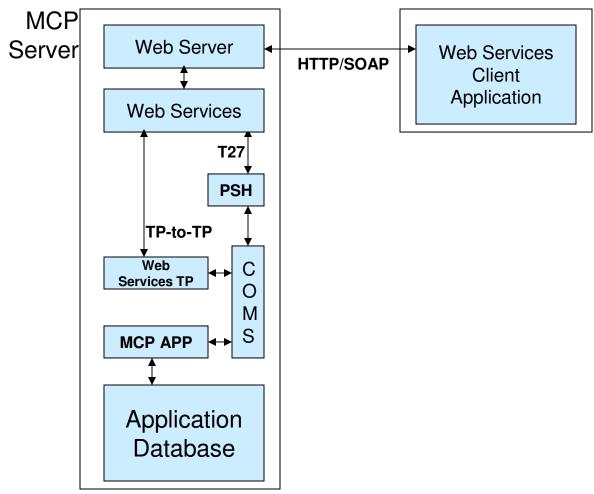
- Wintel Gateway Server (ePortal, SBG)
- MCP Based Client & Server (MGSWeb)
- EAE (AB Suite) Integration
 - Both Web Services Server and Client
 - Uses Wintel Gateway

MCP Apps as Web Services


- Requires some form of wrapper around the MCP functionality
- Wrapper allows Web Service request to be routed to/from MCP application
- Non-proprietary Connection to MCP applications via COMS
 - COMS Station
 - TP-to-TP (may require small TP change)
- Proprietary Connections to applications
 - Library
 - Port File
 - TCP/IP Port
 - RATL (EAE)

- Web Services Server via a Wintel Gateway
 - Intel hardware
 - Windows OS, IIS
 - Web Services using .NET (most cases)
 - Backend Module to Communicate to MCP
- Gateway to MCP Communications
 - Telnet Terminal Emulation
 - CCF Terminal Emulation
 - Proprietary TCP/IP port/protocol

Web Services Server via a Wintel Gateway

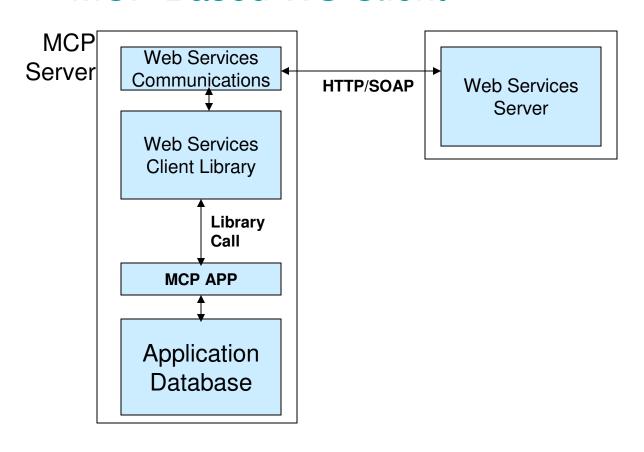


MCP Based Web Service

- Web Service Server runs under MCP control
- Routes to MCP App via COMS station or COMS TP-to-TP
- T27 interface (COMS station) requires no existing code changes
- TP-to-TP is more efficient (no screen scraping) and allows for larger data interchange

MCP Based Web Service

Web Services Client - MCP


MCP Based WS Client

- Allows MCP applications to make a Web Services call on another server
- Supported by EAE and MGSWeb
- MCP Application does a simple library call to make the outbound WS Client call

Web Services Client - MCP

MCP Based WS Client

Considerations - Data

Re-Use of Existing Logic

- 80x24 screens are good for proof-ofconcept web services requiring no code changes
- 80x24 screen transactions may not contain enough information for production purposes
- Custom code, based on existing TP logic, seems the most common path

Considerations – Test/Failover

Test vs Production

- Preference is to move ALL test WS Server/Client code and config to production environment
- Preference to have WS Client select Test vs Prod by setting the server URL

Failover

 Switch to backup or DR system with networking changes

Persistent Connections

- MCP TCP/IP connect/disconnect slows throughput
- On close, TCP/IP port must "time wait" for TTL*2 seconds on most systems
- Most servers default to persistent HTTP connections
 - Connection: Keepalive
- Client then controls persistence
- Persistence provides a 4 to 50 times throughput increase

Non-Persistent Connection

Client Connect	>	
	<	Server Accept
SOAP Request	>	SOAP Response
Client Disconnect	>	
Client Connect	> <>	Server Accept
SOAP Request	>	SOAP Response
Client Disconnect	>	

Persistent Connection

Client Connect	<>	Server Accept
SOAP Request	>	SOAP Response
SOAP Request	> <	SOAP Response
SOAP Request	> <>	SOAP Response
Client Disconnect	>	

Pipelining

- Requires a persistent connection
- Multiple requests are sent without waiting for responses
- Responses return in send-order
- Most web servers (including ATLAS) support this
- Use controlled by whether WS Client application is coded to take advantage of this

Piplining

Client Connect	>		
	<	Server Accept	
SOAP Request	>		
SOAP Request	>		
SOAP Request	>		
	<	SOAP Response	
	<	SOAP Response	
	<	SOAP Response	
Client Disconnect	>		

Different types

- SSL
- HTTP Logon
- SOAP Headers
- Actual WS call to logon
- WS-Security

- Secure Socket Layer (SSL)
 - Done underneath Web Service
 - SSL Authenticates server
 - Get certificate from Server
 - Validate certificate from a Trusted Certificate Authority
 - Two way SSL
 - Client Authenticates server
 - Server Authenticates client
 - Encryption, provided by the certificate keys, is transparent to application
 - Application must get/supply authentication info through an external interface

HTTP Logon

- Logon required for a specific virtual directory
- Uses HTTP AUTHORIZATION header
- BASIC uses a Base64 exchange so SSL is required for secure communications
- DIGEST uses MD5 encrypted exchange
- No data encryption, can use with SSL
- Application must get/supply authentication info through an external interface

SOAP Headers

- One must pre-acquire authentication information
- The SOAP message can contain both a HEADER section as well as a body
- Authentication information is provided as in SOAP HEADER fields
- SSL is still needed to encrypt HEADERs
- Application must supply authentication info using special code

SOAP Headers

```
<Envelope>
 <Header>
  <NASAHeader xmlns="service.nasa.gov">
   <MessageData>
    <MessageID>568425287</MessageID>
   </MessageData>
   <AccessTicket>n)EvgLK^Cb#3TX@ApE^sdiZH4bJ
    )nNX.K+,Qy[oeqe0O-59`G-</AccessTicket>
   <UserAuthorization>
    <UserName>MS0281331</UserName>
   </UserAuthorization>
  </NASAHeader>
 </Header>
 <Body>
  .... SOAP body .....
 </Body>
</Envelope>
```


WS Call to Logon

- One must pre-acquire authentication information (usercode/password)
- An initial web services call is made for authentication
- The response contains a token to be placed in the body of all subsequent web services calls
- Application must be "token" aware
- SSL is still needed to encrypt dialogs

WS Call to Logon

Client Connect	<>	Server Accept
Logon Request	<>	Logon Response (token)
SOAP Request (token)		SOAP Response
SOAP Request (token)		SOAP Response
SOAP Request (token)		SOAP Response
Client Disconnect	>	

WS-Security (WSS)

- Originally developed by IBM, Microsoft, VeriSign and Forum Systems
- Attach signature and encryption headers to SOAP messages
- Provides end-to-end integrity for each message
- Protocol uses SAML, Kerberos and x.509 certificates
- Requires application awareness

Reference Material

- WC3 Web Services Architecture Requirements http://www.w3.org/TR/wsa-regs/
- WC3 Web Services Description Requirements http://www.w3.org/TR/ws-desc-reqs/
- Web-Enablement: Setting the Foundation for Web Services, eCommunity
 Presentation October 10, 2002
 Wayne Kernochan, Aberdeen Group
- Web Services and the Microsoft Platform, Payam Shodjai, Microsoft Corporation http://msdn2.microsoft.com/en-us/library/aa480728.aspx

Additional Questions?

Michael S. Recant V.P. Software Development

MGS, Inc. 10901 Trade Road, Suite B Richmond, VA 23236

Voice: (804)379-0230

Fax: (804)379-1299

Email: Mike.Recant@mgsinc.com

Web: www.mgsinc.com

This presentation is available on our WEB site

UNITE 2007 Technology Conference

Some Considerations for MCP Applications using Web Services

