
September, 2016 - Rev 3

MGS Web Services for
Unisys MCP Systems (MGSWeb)

Reference Manual

Version 3.12

Computer Business Solutions

MGS, Inc.

September, 2016 - Rev 3

MGS Web Services for Unisys MCP Systems Reference Manual

Version 3.12

© Copyright 2003-2016 MGS, Inc. All rights reserved.
All trademarks and trade names are the property of their respective owners.

Disclaimer
NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT.

This document describes the current release of the MGS Web Services for Unisys MCP Systems. The
MGS Web Services for Unisys MCP Systems Software is a proprietary product suite offered for licensing
by MGS, Inc. Use of this software requires that a license agreement be signed with MGS, Inc or one of its
distributors. No part of this document may be copied, distributed, or transmitted in any form or by any
means, mechanical or electronic, without the express written permission of MGS, Inc.

MGS, Inc. believes the information presented in this document is accurate and reliable. However, MGS,
Inc. assumes no responsibility for any consequences arising from the use of the MGSWeb software, this
document or the information contained herein. MGS, Inc. reserves the right to revise the contents of this
publication without obligation to notify any person of such revisions.

All questions and comments concerning this document should be directed to:

MGS, Inc. Customer Support
MGS, Inc.
583 Southlake Boulevard
Suite A
Richmond, VA 23236

Phone: 804-379-0230
Fax: 804-379-1299
E-mail: support@mgsinc.com

mailto:support@mgsinc.com�

CONTENTS Page i

1. Overview ... 1
1.1 WS-In Inbound Web Services .. 1
1.2 WS-Out and HTTP-Out Outbound Web Services .. 3
1.3 MGSWeb Authentication Extensions ... 4

2. Software Installation ... 5
2.1 Documentation .. 5
2.2 Windows PC Installation .. 5
2.3 Host Installation .. 6
2.4 Host License Key .. 9
2.5 SSL Considerations ... 10

2.5.1 Inbound SSL Transactions .. 10
2.5.2 Outbound SSL Transactions ... 11

3. Host Configuration .. 12
3.1 Configuring the Web Services Server ... 12
3.2 Configuring Unisys’ Web Transaction Server (ATLAS) 13
3.3 Configuring DRIVER ... 14
3.4 Configuring the Responder Program .. 18
3.5 Data Translation and Character Sets ... 18

4. Starting the Host Software .. 20

5. Host Software Operation ... 21
5.1 SERVER ... 21
5.2 DRIVER .. 21
5.3 PSH ... 22
5.4 Host Tracing.. 22

6. Deploying WS-In Web Services ... 24
6.1 Station Transactions .. 26

6.1.1 Creating a SOMS Project .. 26
6.1.2 Navigation Tree .. 28
6.1.3 Project Properties Page ... 29
6.1.4 Screen Properties Page .. 30
6.1.5 Screen Image Page .. 30
6.1.6 Freeform Restrictions Page ... 30
6.1.7 File Generation.. 31
6.1.8 Testing... 33

6.2 Program Transactions ... 34
6.2.1 Navigation Tree .. 34
6.2.2 Program Properties Page ... 34
6.2.3 Transaction Properties Page .. 35
6.2.4 Special Field Types ... 36
6.2.5 File Generation.. 37
6.2.6 Testing... 38

CONTENTS Page ii

6.3 Database Transactions .. 39
6.3.1 Navigation Tree .. 39
6.3.2 Database Properties Page .. 39
6.3.3 Dataset Properties Page... 40
6.3.4 File Generation.. 40
6.3.5 Testing... 41

7. Additional WSUtility Features ... 42
7.1 Host Trace Control .. 42
7.2 ASP Project Details... 42

8. Accessing WS-In Web Services from Other Systems .. 44
8.1 Program Transaction MCP Header ... 44

8.1.1 Request Record MCP Header Fields .. 44
8.1.2 Response Record MCP Header Field ... 45
8.1.3 Important Notes .. 45

8.2 Stateless and Stateful Transactions ... 46
8.2.1 Station Transactions .. 46
8.2.2 Program Transactions ... 47
8.2.3 Database Transactions .. 47

8.3 WSDL Details ... 48
8.3.1 Allocate and Deallocate Operations.. 49
8.3.2 mcpElapsed, mcpStation, and mcpDatabase Fields 50

9. Configuring WS-Out and HTTP-Out Web Services .. 51
9.1 Running WSUtility ... 51
9.2 WSDL-Based Web Services ... 51

9.2.1 Loading the WSDL File .. 52
9.2.2 Service Properties ... 53
9.2.3 Disabling Web Service Operations ... 54
9.2.4 Request and Response Records .. 55
9.2.5 Parameter Records .. 57
9.2.6 WS-Out SSL Operation .. 57
9.2.7 Complex XML Schemas ... 57

9.3 Non-WSDL-Based Web Services ... 59
9.3.1 Service Properties ... 59
9.3.2 Operations ... 60
9.3.3 Request and Response Records .. 61
9.3.4 Parameter Records .. 64
9.3.5 HTTP-Out SSL Operation .. 64

9.4 Generating the Host Configuration File .. 65
9.5 Generating the COBOL “COPY library” ... 65

10. Using WS-Out or HTTP-Out to Call a Web Service .. 68
10.1 COBOL Syntax ... 68
10.2 ALGOL Syntax ... 68
10.3 INVOKE Procedure Parameters ... 69

CONTENTS Page iii

10.4 Parameter Record Fields ... 69
10.5 INVOKE Result Values .. 71
10.6 Host Tracing.. 74

11. Web Services for Unisys MCP Sample Programs .. 75
11.1 WS-In Sample Program .. 75

11.1.1 Compiling the Sample COMS Program ... 75
11.1.2 Configuring the Sample COMS Program ... 75
11.1.3 Running the WEBINSAMPLE Visual Basic Program 76
11.1.4 Deleting the COMS Sample Program ... 77

11.2 WS-Out Sample Program ... 78
11.2.1 Compiling the Sample Program .. 78
11.2.2 Running the Sample Program ... 78

11.3 Included Sample Files ... 79

Appendix I Release Notes ... 82
I.1 Release 1.03 .. 82
I.2 Release 2.00 .. 84
I.3 Release 2.01 .. 87
I.4 Release 2.02 .. 88
I.5 Release 3.00 .. 88
I.6 Release 3.01 .. 89
I.7 Release 3.02 .. 90
I.8 Release 3.03 .. 92
I.9 Release 3.04 .. 94
I.10 Release 3.05 .. 94
I.11 Release 3.06 .. 95
I.12 Release 3.07 .. 96
I.13 Release 3.08 .. 96
I.14 Release 3.09 .. 97
I.15 Release 3.10 .. 97
I.16 Release 3.11 .. 97
I.17 Release 3.12 .. 98

 MGSWeb 3.12 Reference Manual Page 1

1. Overview

The MGS Web Services for Unisys MCP software is a general purpose Web Services
implementation that runs under MCP control rather than outboard in a middle tier
computer. It provides an MCP system with the native ability to both process inbound
Web Services requests by application programs on other computers (WS-In) as well as
giving MCP applications the ability to make outbound Web Services requests of other
computers (WS-Out). An additional facility of MGS Web Services is that it provides
MCP applications with the ability to also make outbound HTTP protocol requests to
acquire information from other computers (HTTP-Out).

For WS-In, Web Services use eXensible Markup Language (XML) and the Simple Object
Access Protocol (SOAP) to encode requests and responses, and use the HyperText
Transport Protocol (HTTP) to deliver the request/response data to a network connected
Web Services client application. WS-In Web Services on the Unisys MCP system can use
either Unisys’ Web Transaction Server (ATLAS) or MGS’ Web Services server as its
HTTP server.

For WS-Out and HTTP-Out, MGS Web Services provides its own outbound HTTP client
software to acquire request/response data from a network connected Web Server or Web
Services server.

The transaction volume supported by MGS Web Services is limited only by the capacity
level of the MCP platform and the time required to establish TCP connections. For higher
transaction volumes, the MGS Web Services software supports “persistent” connections,
so multiple transactions can be done over the same socket connection.

MGSWeb also supports the ability to call both inbound and outbound web services over
Secure Socket Layer (SSL) connections. Inbound SSL web services are provided by
routing the inbound web services call through the Unisys Web Transaction Server
(ATLAS). Outbound web services connections using SSL are supported natively by the
MCP-based MGS Web Services software.

1.1 WS-In Inbound Web Services

The WS-In inbound Web Services software allows a MCP system to provide other
network connected computer systems direct access to COMS transactions and DMSII
databases using Web Services, without requiring a middle tier system.

Figure 1 below shows the basic operation of WS-In.

 MGSWeb 3.12 Reference Manual Page 2

Figure 1 – MGSWeb WS-In Data Flow

WS-In Web Services for Unisys MCP currently supports three types of transactions:
Station, Program, and Database.

• Station transactions use a COMS Protocol Specific Handler (PSH) station to
submit the transaction to a COMS application.

The incoming Web Services requests are reformatted from XML (so they appear to
have come from a station) and transmitted to COMS via a PSH station. The PSH
station responses are then “screen-scraped” and converted into XML web service
responses.

A Web Services client application can allocate a specific PSH station for its
exclusive use for multiple transactions, or it can use any available station for each
transaction (for stateless transactions).

COMS DMINTER-

PRETER

Existing COMS Applications (TPs)

WebServices Driver

ATLAS Web Server WebServices HTTP Server

Client Applications (J2EE, .NET, Delphi)

DMSII Databases

WebServices Responder

Station

Program

Database

Flat Files

WebServices PSH

Pseudo Stations

TCP/IP Network

MGS

MGS

MGS MGS

HTTP HTTPS HTTP

 MGSWeb 3.12 Reference Manual Page 3

Most COMS applications can be accessed via Station transactions without any
modifications.

• Program transactions use a special COMS program (included with the Web

Services software) to do TP-to-TP messages.

The incoming requests are converted from XML into flat records with fixed-size
fields (COBOL “01”s) and sent to a COMS application. The application’s
response is then converted into an XML web service response.

The COMS application must be specially coded to handle the TP-to-TP messages,
but this method is more efficient than the Station transaction path.

• Database transactions use the DMSII interpretive interface to retrieve records
from a DMSII database.

The incoming requests are converted from XML to an interpretive interface
“condition”, used to execute a FIND against the database. The resulting record is
then converted into an XML Web Services response.

The conversion of the incoming requests and the generation of the responses are all
controlled by host configuration files, which are generated by the Web Services Utility
(WSUtility) on a Windows PC and transferred to the host.

The WSUtility program also generates Web Services Definition Language (WSDL) files
that describe the COMS Web Services. The WSDL files can be imported by
programming environments (such as Visual Studio .NET or Delphi), so access to the web
service transactions is very simple.

1.2 WS-Out and HTTP-Out Outbound Web Services

WS-Out and HTTP-Out Web Services for Unisys MCP supports two types of outbound
service calls: WSDL-based Web Services (which are called a “Web Service,” or WS-Out),
and non-WSDL-based Web Services (which are called an “HTTP Service,” or HTTP-
Out).

For WS-Out, the WSUtility program is used to read the desired WSDL and to generate the
necessary host configuration as well as generating COPY libraries that can be included
into the calling application program. For HTTP-Out, where there is no WSDL file, the
WSUtility is used to define both the HTTP and the application data formats before
generating the host configuration and application COPY library files.

 MGSWeb 3.12 Reference Manual Page 4

Figure 2 below shows the basic operation of WS-Out and HTTP-Out.

Figure 2 – MGSWeb WS-Out and HTTP-Out Data Flow

1.3 MGSWeb Authentication Extensions

For the WS-Out and HTTP-Out features the MGSWeb software supports the following
authentication protocols:

• No authentication
• HTTP Basic
• HTTP Digest
• Windows NTLM

For authentication, the application program must supply the username and password to be
used for the WS-Out or HTTP-Out call. The MGSWeb software will automatically
perform the authentication required by the server.

ClearPath MCP System

WebServices Library

Web Services
HTTP Services

TCP/IP Network
(HTTP and HTTPS)

Config
Files

COBOL
Applications COPY

Libraries

MGS

WebServices Driver
MGS

Other MCP
Applications

WSUtility
MGS

WebServices WebOut Library
MGS

 MGSWeb 3.12 Reference Manual Page 5

2. Software Installation

MGSWeb software can be delivered in two ways – on a PC format CD or, for electronic
distribution, in a Windows Compressed folder (ZIP file). There are two main steps to
Web Services installation –installing the WSUtility program on a Windows PC and
installing the Web Services code files on the host. Both the folder containing the PC
software and the wrapped file containing the host software are on the Web Services
release CD or in electronic distribution ZIP file.

2.1 Documentation

Complete documentation for MGS Web Services (this manual) can be found in the file
MGS MCP Web Services Reference Manual.pdf, located in the root directory of
the release CD or electronic release ZIP file.

2.2 Windows PC Installation

The Web Services for Unisys MCP release CD contains the Web Services Utility
(WSUtility), which is a Windows program requiring Windows XP or newer. WSUtility
performs the following functions:

• Generates host configuration files
• Generates WSDL files
• Optionally, generates ASP projects for Station transaction projects
• Allows you to modify project settings
• Allows you to test WS-In transactions
• Allows you enable or disable project-specific host tracing

WSUtility is used for all types of WS-In transactions, as well as for WS-Out and HTTP-
Out transactions.

To install WSUtility, copy the WSUTILITY folder from the MGSWeb release CD or
ZIP file to your hard drive. You may also want to add a shortcut to your desktop or
Start menu that references the WSUtility.exe file contained in that folder, so the
program can be run easily (make sure that the working directory of the shortcut is the
directory in which the WSUtility.exe program is located).

 MGSWeb 3.12 Reference Manual Page 6

Note: For a WS-In Station Transaction Web Service, the Unisys Screen Object Modeling

Studio (SOMS) software is needed for the first step where the screen capture is
done. Hence, you will need to install the SOMS software before attempting to
create a Station Transaction Web Service. This can be found on the Screen Object
Modeling Studio CD that comes as part of your Unisys MCP Release CDs.
Simply place the SOMS CD in your CD drive and follow the Installer Wizard
instructions.

The release media contains the following files in the WSUTILITY folder:

WSUtility.exe

This is the Web Services Utility executable file.

webservices.css

This is a copy of the Web Services Cascading Style Sheet (CSS) file from the
AspFiles directory; it allows the host screen images to be displayed on WSUtility’s
Screen Image page correctly.

logo.gif

This is the MGS, Inc graphic displayed on the opening WSUtility screen.

AspFiles*.*

This directory on the release media contains the skeleton files for the ASP project
that WSUtility can generate.

Samples*.*

This directory on the release media contains the sample programs and supporting
files. See Section 11 for details on the sample programs.

2.3 Host Installation

The installation of Web Services on the Unisys MCP host consists of uploading the
wrapped file MGSWEB.CON (host code files container) to the host, unwrapping the files,
optionally configuring either ATLAS or the MGS Web Server, and, if you are not using
ATLAS, starting the Web Services WFL.

The wrap container MGSWEB.CON can be found in the root directory of the release CD or
the electronic distribution ZIP file. You must use a binary file transfer to get the wrap
container to the host; the easiest way to do this is using Windows Explorer to drag and
drop the file to a Unisys MCP share.

To unwrap the code files, use the following command from a CANDE session logged on
to a privileged usercode:

WFL UNWRAP *= AS (<usercode>)= OUTOF “MGSWEB.CON”
TO <family> (PACK, RESTRICTED=FALSE)

 MGSWeb 3.12 Reference Manual Page 7

where <usercode> is the usercode you want to install Web Services to and <family> is
the family you want the Web Services files to install on.

Configuring the Web Server Port Number

If you are going to use the MGS Web Server, the default port that the web server listens
on is 8080; if you wish to change this, you must edit the WEBSERVICES/SERVER/PARAM
file (this file will be called WEBSERVICES/SERVER/NEW/PARAM for new installations).
To do this, log on to the usercode you installed the Web Services code files to, get the
WEBSERVICES/SERVER/PARAM file, change the “port” line in the file from 8080 to the
port number you wish to use, and save the file.

Release File List

The following host files are included in the release:

WEBSERVICES/DRIVER

The main inbound Web Services code, including the XML parser and the SOAP
processor.

WEBSERVICES/HOSTCONFIG/=

This directory contains host configuration files, generated by WSUtility, for all
defined Web Services. The release includes host configuration files for the sample
programs. See Section 11 for details on the sample programs.

WEBSERVICES/PSH

A COMS Protocol Specific Handler (PSH) that provides DRIVER with access to
COMS stations.

WEBSERVICES/SERVER

SERVER is a general-purpose TCP/IP server, referred to in this document as the
“Web Services Server”.

WEBSERVICES/SERVER/NEW/PARAM

The default parameter file for the SERVER program; it contains the port number
that the SERVER will listen on (port number 8080 by default). This file will be
renamed WEBSERVICES/SERVER/PARAM the first time the Web Services software
is brought up.

WEBSERVICES/HTTP/SERVER

The HTTP-specific server library called by the SERVER program.

WEBSERVICES/INTERFACE

This code file is the interface library between the DRIVER and RESPONDER
programs; it also manages the MGSWeb log file and host tracing for all modules.

 MGSWeb 3.12 Reference Manual Page 8

WEBSERVICES/LIBRARY

This library is used by client MCP programs to call outbound Web Services using
WS-Out.

WEBSERVICES/WEBOUT

This library implements the outbound WS-Out and HTTP-Out functionality called
by WEBSERVICES/LIBRARY.

WEBSERVICES/RESPONDER

RESPONDER is a COMS program that sends and receives TP-to-TP COMS
messages for Web Services Program transactions.

WEBSERVICES/SAMPLES/=

This directory contains the WS-In and WS-Out sample files. See Section 11 for
details.

WEBSERVICES/USERFILES/=

This directory contains COPY library files, generated by WSUtility, for both WS-
In Program web services and WS-Out and HTTP-Out web services. The release
includes COPY libraries for the sample WS-Out program. See Section 11 for
details on the sample programs.

WEBSERVICES/WFL

This WFL file starts the Web Services Server (SERVER).

 MGSWeb 3.12 Reference Manual Page 9

2.4 Host License Key

To use the MGSWeb software you must acquire an AccessKey from MGS, Inc. The
AccessKey is then specified to the Host software using the ACCESSKEY command in the
WEBSERVICES/PARAM file. See Section 3.3 for details. The AccessKey is used to
enable/disable the following product features:

• Incoming Web Services (WS-In)
• Outgoing Web Services (WS-Out)
• Outgoing HTTP Services (HTTP-Out)
• Authentication Extensions (Auth)

The AccessKey related messages that may be displayed are as follows:

This software will expire in <number> days

When running in trial mode (no AccessKey), or if your AccessKey is set to expire
in less than 36 days, this message will be logged once a day. Web Services will
still be available.

This software has expired
When you have either exhausted your trial period or your AccessKey has expired,
this message will be logged every time you attempt to initiate the MGSWeb
software. Web Services will not be available.

The specified key is not valid for this system
If your AccessKey does not match either your system serial number or system type
this message will be logged every time you attempt to initiate the MGSWeb
software. Web Services will not be available.

Contact MGS Support immediately if you are having any problems with your AccessKey.

 MGSWeb 3.12 Reference Manual Page 10

2.5 SSL Considerations

MGSWeb supports the ability to call both inbound and outbound web services over Secure
Socket Layer (SSL) connections. Inbound SSL web services are provided by routing the
inbound web services call through the Unisys Web Transaction Server (ATLAS).
Outbound SSL for WS-Out and HTTP-Out transactions is supported natively by the MCP
based MGSWeb software.

You can configure the Unisys Web Transaction Server (ATLAS) to provide SSL
connections for inbound web services connections, and you can use the Web Services
Utility (WSUtility) to configure SSL for outbound connections.

Additionally, WSUtility supports both SSL and non-SSL connections to the MCP system
to transfer host configuration and COBOL include files to the host, and to test inbound
web services transactions. WSUtility also allows you to specify a client certificate it can
use when connecting to the MCP system if ATLAS is configured to use two-way SSL.

MGSWeb SSL requirements:

• MGSWeb release 2.00 or later
• Unisys ClearPath Secure Transport software installed and configured on the MCP

system
• For outbound: NPO versions 51.151 or 52.125 installed on the MCP system
• For inbound: an ATLAS defined SSL port for incoming MGSWeb transactions
• Required certificates or certificate authorities installed on the MCP system

2.5.1 Inbound SSL Transactions

MGSWeb supports SSL connections for inbound transactions via the ATLAS web server
(the MGS Web Server included with MGSWeb does not support SSL). You must have
installed and configured the Unisys ClearPath Secure Transport software and the
necessary server certificates on your MCP system before you can use SSL. Please see the
Unisys documentation for details on setting up SSL on your host system.

Next, to have ATLAS provide SSL connections for MGSWeb web services transactions,
you must use Unisys’ Site Manager to add an SSL port to the web site where you have
defined the MGSWeb virtual directory, or add another MGSWeb virtual directory to a
web site that already has an SSL port. For details on processing MGS web services
through ATLAS, see section 3.2 of this document.

Once you have made the ATLAS configuration changes and updated ATLAS’
configuration files on the host, MGSWeb transactions will then be accessible via secure
sockets. You will have to update your Station, Program and Database web service project
files using WSUtility to specify the secure port number and check the SSL option (and
change the virtual directory, if necessary), and then re-generate the WSDL files and the
host configuration files for each project.

 MGSWeb 3.12 Reference Manual Page 11

WSUtility supports SSL connections to the host for transferring MGSWeb host
configuration and include files, and for testing. WSUtility also supports specifying a
client certificate when connecting to the MCP system if ATLAS is configured to require
two-way SSL.

2.5.2 Outbound SSL Transactions

MGSWeb host software supports SSL connections outbound from the host to the server
providing a web service or HTTP service. WSUtility also supports SSL connections to the
host for transferring MGSWeb host configuration files and COBOL include files.

Note: For the MGSWeb outbound SSL to work, you must have installed and configured
the Unisys ClearPath Secure Transport software on your MCP system.

Note: For proper SSL operation you must first install a fix for the MCP networking
software. The required fix is in NPO version 51.151 (PRI 9777946) and in NPO
version 52.125 (PRI 9777423).

To enable SSL for outbound connections, use WSUtility to set the secure port number and
the SSL option for each Web Service and HTTP Service project file, and then re-generate
the host configuration and COBOL include files. You may also have to reload the WSDL
for Web Services, or change the Server URL for HTTP Services, for any existing service
that was using a non-secure port that has been changed to a secure port.

By default, the MCP system does not come with any Certificate Authorities (CAs) pre-
configured. Hence, you will have to use Unisys’ Security Center software to ensure that
the “ROOT” trusted store under the MCP Cryptographic Services Manager contains the
issuer’s certificate for any SSL sites that you want to access via outbound MGSWeb
transactions. Please see the Security Center’s help file for further information on
installing certificates to the ROOT trusted store.

If the web server that provides the web service you are calling requires a client certificate
(that is, the web server uses two-way SSL), your application can also specify the name of
a client certificate “key container” when calling Web Services. The key must have
already been created in Security Center’s “Socket Keys” container before it can use used
by Web Services.

 MGSWeb 3.12 Reference Manual Page 12

3. Host Configuration

Web Services for Unisys MCP can use either the included Web Services server, or
Unisys’ Web Transaction Server (ATLAS) as its HTTP server.

Both the MGS Web Services server and ALTAS support high-volume “persistent”
connections. ATLAS also supports persistent connection “pipelining,” as well as Secure
Socket Layer (SSL) connections for WS-In inbound transactions. The current version of
the MGS Web Services server does not support pipelining or SSL.

Depending on your desired configuration, you may have to configure one or more of the
following programs:

• The Web Services server, or Unisys’s ATLAS server.
• The Web Services DRIVER program.
• The Web Services RESPONDER program.

The following sections detail the configuration of the HTTP servers, and the DRIVER and
RESPONDER programs.

3.1 Configuring the Web Services Server

The WEBSERVICES/SERVER/PARAM file included with the release files uses 8080 as the
Web Services port, and allows up to twenty concurrent connections. If you want to
change these defaults, use CANDE to modify this file. (If you have not yet run the Web
Services host software, you’ll have to modify the WEBSERVICES/SERVER/NEW/PARAM
file.)

The parameter file contains the following statements:

service WEBSERVICES
 port 8080,
 type STREAM,
 library "WEBSERVICES/HTTP/SERVER",
 dontwait,
 translate,
 maxsubfiles 20;

The port number is set using the port statement; you can change it to any number between
1 and 65535.

The maximum number of concurrent connections is set with the maxsubfiles statement;
you can change this to any number between 1 and 256.

You should not change any of the other statements in the file.

Note: The commas between statements and the terminating semi-colon are required.

 MGSWeb 3.12 Reference Manual Page 13

After making changes to the parameter file, you must terminate the SERVER program
(using the <mix number> AX STOP command) and restart it for the changes to take effect.

3.2 Configuring Unisys’ Web Transaction Server (ATLAS)

If you use the ATLAS server instead of the Web Services server, you must configure
ALTAS with an application and a virtual directory for Web Services. By default, the
virtual directory is assumed to be HostWebServices.

Follow these steps to add the Web Services application and virtual directory to ATLAS’
Site Manager:

1. Access the ATLAS Admin interface (port 2488) via a web browser; you will have
to provide a valid MCP usercode and password that is allowed to access the Admin
interface.

2. Start the Site Manager by clicking on the Site Manager link; note that Site

Manager requires the Sun Java Virtual Machine (JVM).

3. Log on to the provider you want to add the Web Services application and virtual
directory to; ordinarily, you would add them to the ATLASSUPPORT provider.

4. Click the server name in the left panel.

5. On the Applications tab on the right panel, click the Add button to add a new

application.

6. Enter the following values on the Application dialog:

Application Name: HOSTWEBSERVICES
API Type: AAPI
Authentication Method: None
Access Type: Title

Enter the name of the DRIVER program in “path” format in the Title edit box. If
you copied the Web Services files un-usercoded to DISK, the title would be
“/webservices/driver”. If you copied the files under usercode (WS) on PACK,
the title would be “/-/pack/usercode/ws/webservices/driver”.

7. Click the OK button.

8. Next, click the web site you want to add the virtual directory to (usually “Default

Web Site”) in the left panel; the Web Site page should then be displayed.

 MGSWeb 3.12 Reference Manual Page 14

9. Click the New button under the left panel, and enter the name of the virtual
directory (“/hostwebservices/” is recommended) in the New Virtual Directory
dialog.

10. The Virtual Directory page is then displayed. Enter the following settings on this

page:

Directory Type: An application
Application Name: The application you added above (HOSTWEBSERVICES)

11. Click Close, and Yes to the “save changes?” prompt, and OK to the “restart the

server?” prompt.

The ATLAS server will be restarted, and the new application and virtual directory will
then be available. ATLAS will automatically start the DRIVER program when a request
is received for the new virtual directory.

If you add the new MGSWeb virtual directory to a web site that has an “SSL Port” defined
(step 5 above), applications will be able to do WS-In transactions over an SSL connection.

Note: In order for inbound SSL connections to work, you must have installed and

configured the Unisys ClearPath Secure Transport software on your MCP system.
Please see the Unisys documentation for details on setting up Secure Transport on
your host system.

3.3 Configuring DRIVER

The Web Services DRIVER program can also have a parameter file to control its
operation. The default installation does not include this file; if you want to modify the
default settings, you must create it. The file must be named WEBSERVICES/PARAM and
be located under the same usercode and on the same family as the Web Services code
files. It can be any kind of text or source file, such as DATA, SEQDATA, or ALGOL.

The syntax for all settings is:

<setting> = <value>;

Each setting should be on its own line in the file, and the ending semi-colon is required.

Comments can also be included in the file; they must be preceded by a percent sign (%).
All characters after the percent sign on the same record will be ignored by the DRIVER
program.

 MGSWeb 3.12 Reference Manual Page 15

The following settings are available (allowed values for settings are shown in curly
brackets following the setting name):

ACCESSCODE = <accesscode>

The accesscode used when logging on the PSH stations; the default is no
accesscode.

ACCESSKEY = <accesskey>

The Web Services AccessKey. The Web Services software requires a valid
AccessKey to operate. If you do not have an AccessKey, or if your AccessKey has
expired, please contact MGS, Inc. See Section 2.4 for more details on host
licensing.

ACPASSWORD = <password>

The accesscode password to be used when logging on to the PSH stations. The
DRIVER program encodes the password and then converts this statement in the
parameter file to the ACPWENCODE statement (so the password is not maintained
in the parameter file as clear-text).

ALLOW_SELF_SIGNED = { TRUE | FALSE }

If FALSE, when Web-Out makes an SSL connection and the certificate that is
received is self-signed (has a Certificate Authority that points to itself), the
connection will be denied. If TRUE, a self-signed certificate will be considered
acceptable and the SSL connection will proceed normally. The default value is
FALSE.

ALLOW_UPLOADS = { TRUE | FALSE }

If FALSE, the DRIVER program will not allow WSUtility to upload new host
configuration or include files to the host. The default value is TRUE.

CCSNUMBER = <integer>

Use this command to specific a character set number if your MCP system does not
use the native MCP EBCDIC character set. Specifying a CCSNUMBER causes
MGSWeb to build custom translate tables to convert your outbound application
data to UTF-8, and to convert the inbound XML data from UTF-8. The list of
valid values can be found under the EXTMODE file attribute in the File Attributes
Programming Reference Manual. Note that not all valid EXTMODE values are
supported (no multi-byte characters sets are supported). The default value is 4
(ASERIESEBCDIC).

ENABLE_RESPONDER = { TRUE | FALSE }

If TRUE, the DRIVER program will automatically enable the RESPONDER
program during initialization, and disable it when the DRIVER program
terminates; the default is TRUE.

 MGSWeb 3.12 Reference Manual Page 16

ENCODING = <literal>
This command allows you to specify a custom XML encoding literal; the default is
“utf-8”. Note that this value is also used in the “Character-Encoding” HTTP
attribute when building the outbound XML. Also note that specifying a custom
encoding value does not change the way your application data is translated from
EBCDIC to ASCII, or the way inbound XML data is translated from ASCII to
EBCDIC.

IDLE_TIMEOUT = { 10..3600 }

The time, in seconds, of inactivity for a PSH station or database interpretive
interface before it is deallocated; the default is 600 seconds (ten minutes).

MAX_DATABASES = { 1..256 }

The maximum number of concurrent database interpretive interfaces allowed; the
default is 16.

MAX_STATIONS = { 1..1024 }

The maximum number of concurrent stations allowed; the default is 256.

MAX_WORKERS = { 1..16 }

The number of DRIVER workers active to handle incoming requests; the default is
2.

PASSWORD = <password>

The password used to log on to the PSH stations; the default is no password. The
DRIVER program encodes the password and then converts this statement in the
parameter file to the PWENCODE statement (so the password is not maintained in
the parameter file as clear-text).

PREFIX = <station name prefix>

The prefix for the PSH station names (station names will be “<prefix>/<mix
number>STAn”, where <mix number> is the DRIVER program’s mix number and
n is the station number); the default is “WEBSERVICES”.

PSH = <title>

The title of the PSH library; the default is WEBSERVICES/PSH.

REQUEST_TIMEOUT = { 10..300 }

The time, in seconds, allowed before a request times out; the default is 60 seconds.

STATION_HEIGHT = { 10..127 }

The default height, in rows, of the stations allocated by the PSH; the default is 24
rows.

STATION_WIDTH = { 10..255 }

The default width, in columns, of the stations allocated by the PSH; the default is
80 columns.

 MGSWeb 3.12 Reference Manual Page 17

STREAM_FAMILY = <family name>
The family the inbound stream files should be stored on; by default, it is the same
family the MGSWeb code files are on. Stream files are created under the
WEBSERVICES/TEMPFILES/= directory by fields that have the stream or
base64Stream field type.

TEMPFILES_LIFE = <minutes>

Stream files received by MGSWeb are stored in the
WEBSERVICES/TEMPFILES/= directory, and they are automatically removed
after a period of time. This option allows you to control the auto-removal time,
which is calculated from the time the receiving application last accessed the file.
The default value is 15 minutes. You can set this value to zero to disable the auto-
removal of files from the TEMPFILES directory. Note that if an application
wishes to keep a received stream file, it should rename the file and/or move the file
to another family.

TRACE = { { <project type> <project name> } ON | OFF }

The TRACE command allows you to enable host tracing for a specific project or
for all projects. If host tracing is enabled for a project, the request and response
XML and record data is written to the WEBSERVICES/LOG file.

To enable tracing for a specific project, use the “TRACE <project type> <project
name> ON” form of the command. <project type> is either WINDOW (for station
projects), PROGRAM, DATABASE, or WEBSERVICE. The <project name> is
the name you entered on WSUtility’s main “Properties” page for the project.

To enable tracing for all projects, use the “TRACE ON” form of the command.

USERCODE = <usercode>

The usercode used to log on to the PSH stations; the default is the ATLAS
anonymous usercode, or if the Web Services server is used, the usercode
ANONYMOUSWEB.

USER_LIST = <Windows user account list>
This feature allows sites to control which users can run WSUtility. Using the new
USER_LIST parameter file command, a site can list the Windows user accounts
that are allowed to run WSUtility. If the USER_LIST command is not in the
parameter file, any user can run WSUtility; if a USER_LIST command is added to
the parameter file, only the listed users can run WSUtility.

The syntax of the new command is: “USER_LIST = <Windows user account
list>”, where <Windows user account list> is one or more Windows user accounts,
separated by commas. Each Window user account name is limited to 24 characters,
and the list is limited to 20 user accounts.

 MGSWeb 3.12 Reference Manual Page 18

WEBOUT_LINK = { TRUE | FALSE }
If TRUE, the DRIVER program will link to the WS-Out client library to keep it
running. By default, the WS-Out client library (WEBSERVICES/LIBRARY)
terminates when no clients are linked to it.

3.4 Configuring the Responder Program

The Program transaction path requires a COMS program to inject the incoming web
service transactions into the COMS environment, and to transfer the COMS application
responses back to the Web Services software. The RESPONDER program included with
the Web Services for Unisys MCP software performs this function.

You only have to configure the RESPONDER program if you are going to implement
inbound WS-In Program transactions.

You use the COMS Utility window’s PROGRAM screen to configure the RESPONDER
direct program; use the following settings on the Program Activity screen:

Program Name: RESPONDER
TITLE: (<usercode>)WEBSERVICES/RESPONDER ON <family>
Usercode: Either the usercode the MGSWeb software is running under,

or a period if it is running un-usercoded
Maximum Copies: 1
Minimum Copies: 1
Remote-File Interface: N

Note that <usercode> and <family> are the usercode and family you loaded the MGSWeb
code files to. The RESPONDER program does not require a window or an agenda.

3.5 Data Translation and Character Sets

MGSWeb uses the UTF-8 character set for all XML it generates, and it expects all
incoming XML data it receives to be in the UTF-8 character set. By default, MGSWeb
uses the standard EBCDICTOASCII translate table to convert outbound application data
from EBCDIC to UTF-8, and the standard ASCIITOEBCDIC translate table to convert
inbound XML data from UTF-8 to EBCDIC.

If you are using a character set other than the native MCP EBCDIC character set
(ASERIESEBCDIC) on your MCP system, you may have to specify that character set’s
number via the CCSNUMBER parameter file command, so MGSWeb can correctly
convert your application data to UTF-8 and convert incoming UTF-8 data into the
character set your system is using.

 MGSWeb 3.12 Reference Manual Page 19

For certain situations, being able to specify a different encoding literal (other than “UTF-
8”) in the XML, and in the HTTP “Character-Encoding” attribute, may be sufficient. You
can use the ENCODING parameter file command to specify a different encoding literal.
Note that that specifying a custom encoding literal does not change the translation tables
used to convert your outbound application data from EBCDIC to ASCII, or the inbound
XML data from ASCII to EBCDIC.

Note that you can not specify both a CCSNUMBER value and an ENCODING literal in
the parameter file at the same time.

 MGSWeb 3.12 Reference Manual Page 20

4. Starting the Host Software

Once you have completed the configuration required for your site, the DRIVER program
must be run.

1. If you are using the MGS Web Services server, start WEBSERVICES/WFL.
This WFL will run SERVER, which will run DRIVER. The WFL may be
started under a usercode or un-usercoded. Your MCP system operation utility
or staff must then make sure that this WFL is always running to ensure that
your MCP system will continually provide the configured Web Services.

2. If you are using Unisys’s Web Transaction Server (ATLAS), it will initiate the

DRIVER program when the first request is received for the Web Services
virtual directory.

If you have configured the RESPONDER program, and the ENABLE_RESPONDER option
is TRUE (the default), the DRIVER program will automatically enable the RESPONDER
program during initialization.

If you have set the ENABLE_RESPONDER option to FALSE, you must manually make sure
the RESPONDER program is enabled. Use the COMS command STATUS PROGRAM
RESPONDER to check the program’s status, and the ENABLE PROGRAM RESPONDER
command to enable it, if necessary.

 MGSWeb 3.12 Reference Manual Page 21

5. Host Software Operation

The SERVER and DRIVER programs, and the PSH library, accept AX commands to
control their operation.

They all accept the STOP command (<mix number> AX STOP) to terminate. If you
terminate the SERVER program this way, the DRIVER program will also be terminated.

5.1 SERVER

The SERVER program only accepts the STOP command, as documented above. Use this
command to terminate the Web Services software (including DRIVER).

5.2 DRIVER

The DRIVER program also accepts the following AX commands (changes made by these
commands will be lost when the DRIVER program terminates – to make permanent
changes, you must modify the WEBSERVICES/PARAM parameter file). Allowed values
follow the command names in curly brackets.

Note: If you are using ATLAS as your web server, you can also enter these commands

via the “NA <provider> <application name> <command>” ODT
command syntax (for example, “NA ATLASSUPPORT HOSTWEBSERVICES
STATUS”).

MAX_DATABASES { 1..256 }

Sets the maximum number of allowed database connections.

MAX_STATIONS { 1..1024 }

Sets the maximum number of allowed PSH stations.

MAX_WORKERS { 1..16 }

Sets the number of DRIVER workers.

RELOAD { STATION | PROGRAM | DATABASE | WEBOUT }

This command forces a reload of all station, program, database, or WS-Out and
HTTP-Out host configuration files. The RELOAD WEBOUT variant will also force
any persistent outbound TCP/IP connections closed.

TRACE { { <project type> <project name> } ON | OFF }
The TRACE command allows you to enable host tracing for a specific project or
for all projects. If host tracing is enabled for a project, the request and response
XML and record data is written to the WEBSERVICES/LOG file.

 MGSWeb 3.12 Reference Manual Page 22

To enable tracing for a specific project, use the “TRACE <project type> <project
name> ON” form of the command. <project type> is either WINDOW (for station
projects), PROGRAM, DATABASE, or WEBSERVICE. The <project name> is
the name you entered on WSUtility’s main “Properties” page for the project.

To enable tracing for all projects, use the “TRACE ON” form of the command.
“TRACE OFF” will turn off all tracing.

TERMINATE_WORKERS
Terminates all workers, and aborts any active requests. The workers are restarted
automatically.

STATUS { DETAIL }

Displays the current status of the DRIVER program; if you include the DETAIL
option, information is displayed on each active station and database.

5.3 PSH

The PSH library is the software component that provides the interface between WS-In and
a virtual COMS station. It writes information about station allocates/deallocates, any
errors, and any trace information to the Web Services log file, called WEBSERVICES/LOG.
The PSH library accepts the following AX commands (in addition to the STOP
command):

STATUS { <station index> | ALL }

Displays the current status of a single station, or of all allocated stations (if ALL is
specified).

CLEAR { <station index> | ALL }

Clears and deallocates a single station, or all stations (if ALL is specified). This
will also abort any requests using the stations.

TRACE { ON | OFF }

If ON, the PSH tracing option is enabled. This causes PSH activity information to
be written to the WEBSERVICES/LOG file.

5.4 Host Tracing

You can enable the host trace option from within the WEBSERVICES/PARAM file, via the
TRACE operator command to the DRIVER program, or via WSUtility’s Tracing menu.

You can enable tracing for a specific project, or for all projects. You can also enable PSH
tracing to trace PSH station activity.

 MGSWeb 3.12 Reference Manual Page 23

When the host trace option is enabled for a project, all transactions to that Station,
Program, Database or WebService project cause the request and response XML, and the
contents of the COBOL input and output records, to be written to the WEBSERVICES/LOG
file. All message traffic is included in the tracing information. For example, here’s a
trace listing that shows a WS-Out transaction:

10:53:52 (01739) (MGS)WEBSERVICES/WEBOUT ON WORK v3.03 initializing
10:53:52 (01737) Loading
 (MGS)WEBSERVICES/HOSTCONFIG/WEBSERVICE/CURRENCYCONVERTOR ON WORK.
10:53:52 (01737) Server URL
 "http://www.webservicex.net/CurrencyConvertor.asmx":
 host=www.webservicex.net, port=80,
 directory=/CurrencyConvertor.asmx, hash=4"854B665660E2"
10:53:52 (01737) Field Dump for message ConversionRateSoapIn (3 fields)
 #1 REQ-CONVERSION-RATE parent=0 offset=0 length=20
 #2 REQ-FROM-CURRENCY parent=1 offset=0, usage=1 (length=10)
 0 |USD |
 #3 REQ-TO-CURRENCY parent=1 offset=10, usage=1 (length=10)
 0 |EUR |
10:53:52 (01737) HTTP Headers for operation ConversionRate (length=204)
 0 |POST /CurrencyConvertor.asmx HTTP/1.1 Content-Type: text/xm|
 60 |l; charset=utf-8 Content-Length: 376 Host: www.webservicex|
 120 |.net Connection: close SOAPAction: "http://www.webserviceX|
 180 |.NET/ConversionRate" |
10:53:52 (01737) XML Request for operation ConversionRate (length=376)
 0 |<?xml version="1.0" encoding="UTF-8" ?><soap:Envelope xmlns:|
 60 |xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="h|
 120 |ttp://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.|
 180 |xmlsoap.org/soap/envelope/"><soap:Body><ConversionRate xmlns|
 240 |="http://www.webserviceX.NET/"><FromCurrency>USD</FromCurren|
 300 |cy><ToCurrency>EUR</ToCurrency></ConversionRate></soap:Body>|
 360 |</soap:Envelope>|
10:53:53 (01737) XML Response for operation ConversionRate (length=382)
 0 |<?xml version="1.0" encoding="utf-8"?><soap:Envelope xmlns:s|
 60 |oap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="h|
 120 |ttp://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://|
 180 |www.w3.org/2001/XMLSchema"><soap:Body><ConversionRateRespons|
 240 |e xmlns="http://www.webserviceX.NET/"><ConversionRateResult>|
 300 |0.6742</ConversionRateResult></ConversionRateResponse></soap|
 360 |:Body></soap:Envelope>|
10:53:53 (01737) Field Dump for message ConversionRateSoapOut (2 fields)
 #1 RSP-CONVERSION-RATE-RESPONSE parent=0 offset=0 length=6
 #2 RSP-CONVERSION-RATE-RESULT parent=1 offset=0, usage=3, value=0.6742
10:53:53 (01737) Result String: "No error"
10:53:59 (01739) (RWS)WEBSERVICES/WEBOUT ON WORK terminating

 MGSWeb 3.12 Reference Manual Page 24

6. Deploying WS-In Web Services

You use the Web Services Utility (WSUtility) to deploy your Web Services.

Deploying a Station transaction Web Service consists of the following steps:

• Running Unisys’s Screen Object Model Studio (SOMS) to mark and name the
fields and screens you want to make available as a Web Service.

• Running WSUtility to open the SOMS project file.
• Modifying the project settings.
• Optionally testing the web service transaction(s).
• Generating the WSDL and host configuration files.

Deploying a Program transaction Web Service consists of the following steps:

• Creating a new Program project.
• Adding the transactions, including adding request and response record fields for

each.
• Optionally testing the web service transaction(s).
• Generating the WSDL and host configuration files.

Deploying a Database transaction Web Service consists of the following steps:

• Creating a new Database project.
• Retrieving the database schema from the host.
• Optionally testing the web service transaction(s).
• Generating the WSDL and host configuration files.

 MGSWeb 3.12 Reference Manual Page 25

WSUtility Window

The left side of the WSUtility window contains a navigation tree, and the right side
contains multiple tabbed pages. The contents of the navigation tree and the available tabs
depend on the current project type.

 MGSWeb 3.12 Reference Manual Page 26

6.1 Station Transactions

For Station transactions, WSUtility imports a SOMS project file. It gets the names of all
screens and fields, the host, and the COMS window from the SOMS project file.

You open a SOMS project file by clicking the File | Open SOMS project menu item.
You can not create a SOMS project from within WSUtility; you must run SOMS to create
a SOMS project.

When a SOMS project is open, the navigation tree will contain a list of screens and any
screen groups you have created. The following tabs will be displayed:

Project Properties General project settings.
Screen Properties Settings for the screen selected in the navigation tree.
Screen Image The image of the screen selected in the navigation tree.
Test Allows you to test the selected screen.

6.1.1 Creating a SOMS Project

To create the SOMS project file that is used as input for the WS-In Station transactions
build process, you have to first create a SOMS project and “capture” each screen that you
want to use as a web service. Once the “capture” in complete, the SOMS software is no
longer used and final configuration/deployment is done by WSUtility.

Note: Before starting, you must install SOMS on your Windows system. SOMS can be

found on the Screen Object Modeling Studio CD that comes as part of your Unisys
MCP Release CDs. Simply place the SOMS CD in your CD drive and follow the
Installer Wizard instructions.

This section contains a quick overview of using SOMS to capture screens; for more
detailed information, see the SOMS documentation.

Once SOMS has been installed and is running, create a new project by selecting the File |
New Project menu item.

On the New Project dialog, select a project type, specify a project name, and click the OK
button. You may select any of the project types, but we recommend that you use
Microsoft .Net Web Service as the project type. We also recommend that you use the
name of the window from which you are capturing screens as the SOMS project name.

On the Applications Properties dialog, enter the name of the host to connect to, and the
name of the window you are capturing screens from, and click Finish. The MARC logon
screen should then be displayed. Once you have entered a valid usercode and password,
you will be automatically placed on the host window you specified.

 MGSWeb 3.12 Reference Manual Page 27

Page Tabs

There are at least three tabs at the bottom of the SOMS window (depending on the project
type you created, there may be more than three). You will be only using the first two tabs:

Navigate This tab displays the terminal emulator page; you use this
page to transmit host commands to navigate to the screen(s)
you want to capture. Use the Enter key to transmit data to
the host.

Screen Markup This tab displays the current screen, and lets you mark and

name fields on the screen.

To capture a host screen, you first have to use the Navigate tab to enter the host
commands necessary to display the host screen. Once the screen is displayed, click the
Screen Markup tab.

Field Names

SOMS automatically converts the unprotected fields on the screen to fields with generic
names (ie, inputField_0 for the screen’s first field). To rename a field, double-click it
to display the Field Properties dialog, enter the new name, and click the OK button.

Field Arrays

Web Services supports screen “field arrays”, which allows you to group multiple fields on
a screen together using the same array name. You access a field within a field array via
the array name and an index.

To create a field array, you must name all of the fields in the array <array
name>_<index>_, where <array name> is the same identifier for all fields in the array
and <index> is the zero-based index for the field in the array.

Note: <index> must start with zero and must be consecutive with no missing indices.

For example, to create a three-element field array named myArray, you would name the
fields myArray_0_, myArray_1_ and myArray_2_.

Recognition Fields

You must create one or more recognition fields for the screen. The Web Services host
software will use the recognition field(s) to identify the screen when it is received from the
PSH station, so these fields must contain text that is unique to this screen.

• To select an area on the screen, click the mouse at the start of the field and, holding
the mouse button down, move the mouse pointer to the end of the field.

 MGSWeb 3.12 Reference Manual Page 28

• Mark the selected area as a recognition field by clicking the Recognition toolbar
button or selecting the Edit | Set as Recognition Field menu item.

• If the field is common to all of the screens for this project, select the Automatically
create this field on all new screens option on the Properties dialog.

Dynamic Fields

You can also create dynamic fields on the screen, for protected areas of the screen that
contain dynamic data (ie, error messages or status information) that you want to have
included in the web service response (these are output-only fields).

• Use the mouse to select the area as with the recognition fields.
• Mark the selected area as a dynamic field by clicking the Dynamic toolbar button

or selecting the Edit | Set as Dynamic Field menu item.
• If the field is common to all of the screens for this project, select the Make this

region dynamic on all new screens option on the Properties dialog, or use the
Multidynamic toolbar button or the Edit | Set as Dynamic on all Screens menu
item.

Saving the Screen

You can then save the screen by selecting the File | Save menu item, entering a screen
name, and clicking the OK button. This will create the file <screen name>.xml in the
<project name>\Screen Definitions\ directory, which contains the captured T27
screen image (ie, the static text on the screen).

After you have captured all of the screens to be made available as Web Services, exit
SOMS using the File | Exit menu item.

6.1.2 Navigation Tree

When you run WSUtility and open a SOMS project, the navigation tree on the left side of
the window displays a list of the screens that have been captured by that SOMS project.

The navigation tree also allows you to create screen groups, which are used by the ASP
project that WSUtility can build when it generates the WSDL file. To create a screen
group, you click the Edit | Add group menu item. You can then drag the screens and
drop them on the screen group to add the screen to the group. Screen groups allow you to
group the screens in a logical order, rather than having all screens listed directly under the
window name. Screen groups can also contain other screen groups. If you delete a group,
all of its screens are moved back directly under the window name in the navigation tree.

 MGSWeb 3.12 Reference Manual Page 29

6.1.3 Project Properties Page

If you are using the MGS Web Services server, the Port Number field on the Project
Properties page must match the port number in the WEBSERVICES/SERVER/PARAM file;
the value in the Virtual Directory field is ignored.

If you are using the ATLAS server, the Port Number field must match the ATLAS server
port, and the Virtual Directory field must match the virtual directory you created for Web
Services with Site Manager. If the ATLAS port is an SSL port, check the SSL Option
under the Host Name field, and optionally select a client certificate from the SSL Client
Certificate drop-down list (if ATLAS is configured to require certificates).

If the window’s transactions are stateless, select the This window’s transactions are
stateless option. If a window’s transactions are stateless, the application does not save
data about the originating station (“state”) between transactions, and any transaction can
be submitted at any time (that is, no transaction is dependent on the result of previous
transactions). (If you do not check this option, client programs will be required to allocate
a station before doing any transactions to this window.)

If the window is a LINC window, check the This is a LINC window option. This option
forces the DRIVER program to discard host responses that do not contain at least one
“transmit-protected” field on page 1 of the PSH pseudo station. A window can not be
marked as both stateless and a LINC window.

If you want client programs to be able to submit “freeform” transactions to this window,
check the Include a “Freeform” screen in the generated WSDL option. This option
causes WSUtility to insert a screen called “Freeform” in the generated WSDL, which
allows client programs to submit any command to the host and get the response in a single
field. This option can only be set if the stateless option is not set.

Optionally, you can have the WSUtility generate an ASP project when it generates the
WSDL file. The ASP project can be used to access the Station Web Services you have
defined via a web browser without any programming. Check the Create ASP project files
when generating the WSDL file option to have the WSUtility generate the ASP project.
See the ASP Project section later in this document for details on using the ASP project.

Normally, WSUtility does not include the length of each element in the WSDL that it
generates, because most development environments do not use this information. If you
want field lengths stored in the WSDL, you can check the Include field length information
in the generated WSDL option. Note that enabling this option will make the WSDL larger
and more complex.

 MGSWeb 3.12 Reference Manual Page 30

6.1.4 Screen Properties Page

The Screen Properties page lists the fields on the screen selected in the navigation tree.
This field list is read-only; to make changes to the fields on the screen, you must re-run
SOMS, and then re-import the SOMS project back into WSUtility.

If a field is a member of a field array, the field’s index will be displayed in brackets after
the field name.

There is also an Output Screen field on this page to allow you specify the response screen
for the screen selected in the navigation tree. You would need to set this if an input screen
receives a different screen as output (by default, Web Services assumes screens receive
themselves as output), or if a screen is output-only (that is, a screen that can not be
submitted to the system as a web service, but may be returned as a response).

6.1.5 Screen Image Page

This page displays the selected screen’s image. Regular request fields are displayed in
blue, fields in a field array are in green, “transmit protected” fields are gray, and dynamic
(output-only) fields are in red. If you place the mouse cursor over a field, the name of the
field (and its index, if it is in a field array) will be displayed in a “hint” window.

6.1.6 Freeform Restrictions Page

This page is only visible if you have set the Include a “Freeform” screen in the generated
WSDL option. You can use this page to restrict the text allowed to be submitted to the
“Freeform” screen.

To leave the Freeform screen unrestricted, select the Allow any Freeform screen input
option.

Note: If you do not restrict the Freeform screen, client programs will be able to submit

any command to the PSH station, which is a potential security risk.

To restrict the Freeform screen, select the Allow only freeform transactions that start with
the following literals option, and then add the allowed transaction literals to the displayed
list by entering them in the New Literal field and clicking the Add button. To delete an
entry from the list, select it and click the Delete button. With this option set, transactions
submitted to the Freeform screen will be accepted only if they start with one of the literals
in the list.

 MGSWeb 3.12 Reference Manual Page 31

6.1.7 File Generation

Once you have modified the settings of the project you have open, you can generate the
host configuration file, so the host Web Services software can process the web service
transactions, and a WSDL file, so client programs can import the WSDL and call the MCP
Web Services.

To save your project settings, the WSUtility creates the file _settings.xml in the
SOMS project directory. The project settings are automatically saved if you generate
either a WSDL or host configuration file, or you can click the File | Save menu item to
manually save the project settings.

Generating the WSDL File

You generate the WSDL file by clicking the File | Generate WSDL file menu item. If
you have the Create ASP project files option set, the WSUtility will also generate the ASP
project files. The default name for the WSDL file for a Station transaction project is
<window name>.WSDL.

To make the WSDL file available via the Internet or an intranet, you will have to create
the WSDL file in (or copy it to) a web server directory. If you are using ATLAS, you can
even put the WSDL file on the MCP host.

Generating the Host Configuration File

The WSUtility generates Station host configuration files under the
WEBSERVICES/HOSTCONFIG/WINDOW/= directory on the host system. These files are
sent to the host via the same port that the normal Web Services use (using the MGS Web
Services server or ATLAS). After the files are transferred to the host, the DRIVER
program reloads them so new settings are automatically picked up.

Host configuration files contain the information necessary for the DRIVER program to
convert the incoming Web Services request from XML to a screen image. The files are in
XML format, and are EBCDIC stream files with a record size of one byte.

To generate the host configuration file, you click the File | Generate host config file
menu item. You must have the host server software (either the MGS Web Services server
or the ATLAS server) configured and running on the host before doing this, because the
DRIVER program receives the host configuration information and creates the file on the
MCP system.

 MGSWeb 3.12 Reference Manual Page 32

When you click the Generate host config file menu item, a transfer dialog is displayed,
reminding you that the host server must be running. When it is, click the Start button.
The data will then be transferred automatically, and the name of the new host
configuration file will be displayed. If an error occurs, details will be displayed on the
transfer dialog.

 MGSWeb 3.12 Reference Manual Page 33

6.1.8 Testing

Once you have generated the host configuration file, you can use the Test page to submit
test transactions to verify each Station transaction.

The Test page contains two tabs at the bottom of the page – Request Data, which lists the
request fields for the transaction, and Response Data, which displays the response’s fields.
The Test page also contains a Submit button to send the transaction to the host (this
button is only enabled when the Request Data tab is selected), and an Allocate button
(used to allocate a station on the host so you can test stateful transactions). If you have
allocated a station, the Allocate button will become the Deallocate button.

To test a particular screen’s transaction, select it in the Navigation tree, and click the Test
tab. Click the Request Data tab, enter the test data into the fields on the screen, and click
the Submit button. The Response Data tab will be automatically selected when the
response is received so the response data is visible.

 MGSWeb 3.12 Reference Manual Page 34

6.2 Program Transactions

When you create a new Program project, or open an existing one, WSUtility allows you to
create transactions. A transaction consists of a transaction name and a request and a
response record. Each request and response record consists of MCP Header fields,
optional SOAP Header fields, and one or more SOAP Body fields.

When a Program project is open, the navigation tree will contain a list of transactions you
have created, and the following tabs will be displayed:

Program Properties General project settings.
Transaction Fields Lists the fields for the selected transaction.
Test Allows you to test the selected transaction.

6.2.1 Navigation Tree

When a Program project is open, the navigation tree lists the transactions in the project.
The first transaction in a new Program project is created for you automatically as
newTransaction_0. You can use the Edit | Rename transaction menu item to rename
existing transactions, and the Edit | Add transaction menu item to create more
transactions.

6.2.2 Program Properties Page

The Program Properties page lets you set the program name, host name, port number,
virtual directory, and the MCP header SSL options for the Program project. The program
name you enter here should match the application program that will be handling the
transactions.

If you are using the Web Services server, the port number on this page must match the
port number in the WEBSERVICES/SERVER/PARAM file; the value in the Virtual Directory
field is not used.

If you are using the ATLAS server, the Port Number field must match the ATLAS server
port, and the Virtual Directory field must match the virtual directory you created for Web
Services with Site Manager. If the ATLAS port is an SSL port, check the SSL Option
under the Host Name field, and optionally select a client certificate from the SSL Client
Certificate drop-down list.

The MCP header fields are items included in the request records by the Web Services
software to help your application program identify which transaction is being requested,
and also to identify the client calling the Program transaction.

 MGSWeb 3.12 Reference Manual Page 35

By default, the request record’s MCP header fields include a six-byte transaction token,
the name of the transaction, and the remote client IP address, and the response record
contains the transaction token. If you have configured ATLAS to require two-way SSL,
you can use the SSL Client Certificate Transaction MCP Header Fields options on the
Properties page to have information about the client’s certificate included in the MCP
header fields. Please see the Accessing WS-In Web Services from Other Systems
section later in this document for more details.

Normally, WSUtility does not include the length of each element in the WSDL that it
generates, because most development environments do not use this information. If you
want field lengths stored in the WSDL, you can check the Include field length information
in the generated WSDL option. Note that enabling this option will make the WSDL larger
and more complex.

6.2.3 Transaction Properties Page

You use this page to add, rename, and delete fields in both the request and response
records for the transaction selected in the navigation tree. You use the tabs at the bottom
of the Transaction Properties page to select either the request record or the response
record. The selected record is displayed in the list box in the middle of the page in a
COBOL “01” record format.

Each record consists of three sections: the MCP Header, the SOAP Header, and the SOAP
Body. You can not modify the MCP Header fields. You can add fields to either the
SOAP Header or SOAP Body of a record. Normally, you would add all fields to the
SOAP Body, unless a client application requires SOAP Header fields.

You add fields by selecting either the SOAP Header Fields or SOAP Body Fields item in
the field list, entering the new field’s XML name, COBOL name, type, length, and occurs
value in the fields above the record display, and clicking the Add button. If you do not
enter a COBOL name, a default one will be generated from the XML name. You can also
use the Field Parent drop down list to select the parent field for the new field. If you
select a non-group field as the field’s parent, the new field will be inserted immediately
above the selected field in the record.

To modify a field, select it with the mouse, edit the field’s XML name, parent, COBOL
name, type, length and/or occurs values, and click the Modify button. To delete a field,
select it and click the Delete button.

To create a field array, enter a value greater than one in the Occurs field. If a field in
either the request or response record is an array, the number of occurrences will be
displayed with an “OCCURS” clause after the field name.

You can also create a “group” field; group fields have one or more child fields, which can
in turn be group fields. Group field arrays are also supported.

 MGSWeb 3.12 Reference Manual Page 36

You can move a field within a record by dragging and dropping the field to a new location
(including between the SOAP Header and SOAP Body). You can not drag a field
between records or transactions, however.

6.2.4 Special Field Types

In addition to the standard group, alpha and numeric field types, fields in the request
record can also be one of the following special types:

• base64: The field will contain data encoded with the base64 encoding algorithm.
The DRIVER program will automatically convert the data from base64 to binary
in the request record, and from binary to base64 in the response record. This field
type allows your application to send and receive binary data. The field length is
limited to less than 64K bytes.

• stream: This field type allows your application to send and receive large amounts
of text data. For “stream” fields in the request record, all data for the field in the
inbound XML will be translated from ASCII to EBCDIC, and then written directly
to a temporary stream file on the MCP system; the title of the temporary file will
be inserted into the request record passed to your application. For “stream” fields
in the response record, the application must insert the name of a MCP stream file
into the field; MGSWeb will then insert the file’s contents (translated from
EBCDIC to ASCII) into the outbound XML. “stream” fields are 100 characters
long in the request and response records (long enough to contain a file title), but
the data in the XML can be of any length.

• base64Stream: This type is a combination of the base64 and stream types; it
allows your application to send and receive large amounts of binary data. For
“base64Stream” fields in the request record, the inbound XML data for the field is
converted from base64 to binary and written directly to a temporary stream file;
the title of the temporary file will be inserted into the request record passed to your
application. For “base64Stream” fields in the response record, the application
must insert the title of an MCP stream file in the field; MGSWeb will then insert
the contents of the file, converted to base64, into the outbound XML.
“base64Stream” fields are 100 characters long in the request and response records
(long enough to contain a file title), but the data in the XML can be of any length.

Note that the inbound “stream” and “base64Stream” files will be created under the same
usercode as the MGSWeb code files, in the WEBSERVICES/TEMPFILES/= directory, with
the EXTMODE attribute set to OCTETSTRING.

By default, they will be stored on the same family as the MGSWeb code files; you can
change this using the STREAM_FAMILY setting in the WEBSERVICES/PARAM file.

 MGSWeb 3.12 Reference Manual Page 37

MGSWeb will remove the files in the TEMPFILES directory fifteen minutes after they are
last accessed by the receiving application; you can control the auto-removal time using the
TEMPFILES_LIFE setting in the WEBSERVICES/PARAM file.

6.2.5 File Generation

Once you have modified the settings of the project you have open, you can generate the
host configuration file, so the host Web Services software can process the web service
transactions, and a WSDL file, so client programs can import the WSDL and call the MCP
Web Services.

You can also optionally generate a COBOL copy library, to use in your COMS application
that processes the transaction in the Program project.

To save your project settings, the WSUtility creates the file <program name>.psf in the
directory of your choice. The project settings are automatically saved if you generate
either a WSDL or host configuration file. You can also click the File | Save menu item to
manually save the project settings.

Generating the WSDL File

You generate the WSDL file by clicking the File | Generate WSDL file menu item. The
default name for the WSDL file for a Program transaction project is <program
name>.WSDL.

To make the WSDL file available via the Internet or an intranet, you will have to create
the WSDL file in (or copy it to) a web server directory. If you are using ATLAS, you can
even put the WSDL file on the MCP host.

Generating the Host Configuration File

The WSUtility generates program host configuration files under the
WEBSERVICES/HOSTCONFIG/PROGRAM/= directory on the host system. These files
are sent to the host via the same port that the normal Web Services use (using the Web
Services server or ATLAS). After the files are transferred to the host, the DRIVER
program reloads them so new settings are automatically picked up.

Host configuration files contain the information necessary for the DRIVER program to
convert the incoming Web Services request from XML to a request record. The files are
in XML format, and are EBCDIC stream files with a record size of one byte.

To generate the host configuration file, you click the File | Generate host config file
menu item. You must have the host server software (either the Web Services server or the
ATLAS server) configured and running on the host before doing this, because the
DRIVER program receives the host configuration information and creates the file on the
MCP system.

 MGSWeb 3.12 Reference Manual Page 38

When you click the Generate host config file menu item, a transfer dialog is displayed,
reminding you that the host server must be running. When it is, click the Start button.
The data will then be transferred automatically, and the name of the new host
configuration file will be displayed. If an error occurs, details will be displayed on the
transfer dialog.

Generating the COBOL Copy Library

WSUtility can also generate a COBOL “COPY library” (include file) for use by the
COMS application that will process the transactions in the Program project. The include
file is named WEBSERVICES/USERFILES/PROGRAM/<program name>, under the
same usercode and on the same family as the Web Services code files.

The generated include file will contain all request and response records for all transactions
defined in the project. All request records will use the same memory area (all but the first
one will be a “REDEFINES”) so your program can do a COMS “RECEIVE” into any one
of them, and not have to copy the data.

To generate the include file, click the File | Generate include file menu item. You must
have the host server software (either the Web Services server or the ATLAS server)
configured and running on the host before doing this, because the DRIVER program
receives the host configuration information and creates the file on the MCP system.

When you click the Generate include file menu item, a transfer dialog is displayed,
reminding you that the host server must be running. When it is, click the Start button.
The data will then be transferred automatically, and the name of the new include file will
be displayed. If an error occurs, details will be displayed on the transfer dialog.

6.2.6 Testing

Once you have generated the host configuration file, you can use the Test page to submit
test transactions to verify each Program transaction.

The Test page contains two tabs at the bottom of the page – Request Data, which lists the
request fields for the transaction, and Response Data, which displays the response’s fields.
The Test page also contains a Submit button to send the transaction to the host (this
button is only enabled when the Request Data tab is selected).

To test a particular Program transaction, select it in the Navigation tree, and click the Test
tab. Click the Request Data tab, enter the test data into the fields on the screen, and click
the Submit button. The Response Data tab will be automatically selected when the
response is received so the response data is visible.

 MGSWeb 3.12 Reference Manual Page 39

6.3 Database Transactions

For Database transactions, WSUtility downloads the database’s schema from the host.
You must specify the name of the host and the title of the DMINTERPRETER library on
the Database Properties page before downloading the schema.

Note: Visibility of the database (ie, the security of the control file and the DMSUPPORT

and DMINTERPRETER libraries) must be set correctly to allow the Web Services
software to successfully open a database.

When a Database project is open, the navigation tree will contain a list of the database’s
datasets, and the following tabs will be displayed:

Database Properties General project settings.
 Dataset Properties Lists the fields in the selected dataset.
 Test Allows you to test the selected dataset.

6.3.1 Navigation Tree

When a Database project is open, the navigation tree lists the database’s datasets after you
have retrieved the database’s schema from the host.

6.3.2 Database Properties Page

The Database Properties page lets you set the host name, port number, virtual directory,
and DMINTERPRETER title for the Database project. The database’s name is set when
you download the database’s schema.

If you are using the Web Services server, the port number on this page must match the
port number in the WEBSERVICES/SERVER/PARAM file; the value in the Virtual Directory
field is not used.

If you are using the ATLAS server, the Port Number field must match the ATLAS server
port, and the Virtual Directory field must match the virtual directory you created for Web
Services with Site Manager. If the ATLAS port is an SSL port, check the SSL Option
under the Host Name field.

Normally, WSUtility does not include the length of each element in the WSDL that it
generates, because most development environments do not use this information. If you
want field lengths stored in the WSDL, you can check the Include field length information
in the generated WSDL option. Note that enabling this option will make the WSDL larger
and more complex.

After you have set the host name and DMINTERPRETER title, you can click the Get
Schema button on this page to request a list of the database’s datasets and fields. You
must make sure the server is configured and running on the host before doing this.

 MGSWeb 3.12 Reference Manual Page 40

Dataset Field Limitations

There are some limitations on dataset fields:

• Group names are discarded; only actual fields are included.
• Any field that has multiple subscripts is discarded.
• Only key fields are included in the request record; however, all fields are included

in the response record.

6.3.3 Dataset Properties Page

This page is displayed automatically when you select a dataset in the Navigation Tree. It
shows the dataset’s fields, including the name, type, and length of the field. If the field is
a “key” field (it’s either a major or minor key in a set), a yellow key will be displayed to
the left of its name. If the field is an array of items (it has an OCCURS clause in the
DASDL), the number of occurrences will be shown in brackets after the name.

You can also use this page to disable access to the dataset from Web Services; that is, if
you un-check the Allow access to this dataset via Web Services requests checkbox, the
dataset will not be included in the generated WSDL.

6.3.4 File Generation

Once you have modified the settings of the project you have open, you can generate the
host configuration file, so the host Web Services software can process the web service
transactions, and a WSDL file, so client programs can import the WSDL and call the MCP
Web Services.

To save your project settings, the WSUtility creates the file <database name>.dsf in
the directory of your choice. The project settings are automatically saved if you generate
either a WSDL or host configuration file, or you can click the File | Save menu item to
manually save the project settings.

Generating the WSDL File

You generate the WSDL file by clicking the File | Generate WSDL file menu item. The
default name for the WSDL file for a Database transaction project is <database
name>.WSDL.

To make the WSDL file available via the Internet or an intranet, you will have to create
the WSDL file in (or copy it to) a web server directory. If you are using ATLAS, you can
even put the WSDL file on the MCP host.

 MGSWeb 3.12 Reference Manual Page 41

Generating the Host Configuration File

The WSUtility generates database host configuration files under the
WEBSERVICES/HOSTCONFIG/DATABASE/= directory on the host system. These files are
sent to the host via the same port that the normal Web Services use (using the Web
Services server or ATLAS). After the files are transferred to the host, the DRIVER
program reloads them so new settings are automatically picked up.

Host configuration files contain the information necessary for the DRIVER program to
convert the incoming Web Services request from XML to a DMSII interpretive interface
request. The files are in XML format, and are EBCDIC stream files with a record size of
one byte.

To generate the host configuration file, you click the File | Generate host config file
menu item. You must have the host server software (either the Web Services server or the
ATLAS server) configured and running on the host before doing this, because the
DRIVER program receives the host configuration information and creates the file on the
MCP system.

When you click the Generate host config file menu item, a transfer dialog is displayed,
reminding you that the host server must be running. When it is, click the Start button.
The data will then be transferred automatically, and the name of the new host
configuration file will be displayed. If an error occurs, details will be displayed on the
transfer dialog.

6.3.5 Testing

Once you have generated the host configuration file, you can use the Test page to submit
test transactions to verify each Database transaction.

The Test page contains two tabs at the bottom of the page – Request Data, which lists the
request fields for the transaction, and Response Data, which displays the response’s fields.
The Test page also contains a Submit button to send the transaction to the host (this
button is only enabled when the Request Data tab is selected), and an Allocate button
(used to allocate a database on the host). If you have allocated a database, the Allocate
button will become the Deallocate button.

To test a particular Database transaction, select it in the Navigation tree, and click the Test
tab. Click the Request Data tab, enter the test data into the fields on the screen, and click
the Submit button. The Response Data tab will be automatically selected when the
response is received so the response data is visible.

 MGSWeb 3.12 Reference Manual Page 42

7. Additional WSUtility Features

7.1 Host Trace Control

You can control the host trace option for the current project from within WSUtility via the
Tracing menu. You can retrieve the current project’s tracing status from the host, and
enable/disable tracing for the current project from this menu. Trace information is written
to the Web Services log file (called WEBSERVICES/LOG). A project must be open, and a
host name and port number specified, for the functions on the Tracing menu to work.

7.2 ASP Project Details

The WSUtility program can generate an Active Server Pages (ASP) project when you
generate the WSDL file for a Station transaction project. The ASP project files are written
to the same directory you store the WSDL file in. The generated ASP project provides a
complete browser-based solution to use the Web Services you have defined with the
SOMS project without any coding.

The ASP project should work with recent versions of both Internet Explorer and Netscape
Navigator.

ASP Files

The following files are generated by WSUtility:

Allocate.html
Deallocate.html
Error1.html
Error2.html
Error3.html
Fault.html
Folder.gif
Logoff.html
Screen.gif
Webservice.asp
Webservice.css
Webservice.js
Welcome.html

<window name>_menu.html
<window name>\<screen name>.html

You can edit any of the <screen name>.html files to customize the look of the host
screens.

 MGSWeb 3.12 Reference Manual Page 43

The _menu.html file contains the navigation menu for the window, including any screen
groups you have created. The ASP project will automatically merge all _menu.html
files together at runtime to create a single navigation tree.

For example, if you place the ASP project for window TEST1 under the MYHOST
directory, and then you also place the ASP project for window TEST2 under the same
MYHOST directory, the _menu.html files for TEST1 and for TEST2 will be merged
together and displayed in the browser as a single navigation tree.

To access the ASP project from a browser, enter the URL:

http://<server>/<directory>/webservice.asp

where <server> is the name of the IIS web server you installed the ASP project on, and
<directory> is the virtual directory that contains the ASP project files.

ASP Generation Options

There are two generation options available for the ASP project within the WSUtility:

Use disabled INPUT elements for output-only fields

If you select this option, output-only fields will be placed on the web page in disabled
INPUT elements, rather than in SPAN elements. Some browsers do not support SPAN
elements completely; select this option if the output-only fields do not display correctly.

Include a debug check box on each screen

If you select this option, each screen will contain, in the lower-right hand corner, an
unlabelled checkbox. If the user checks the box before submitting the screen, the XML
request and response will be added to the browser response page.

 MGSWeb 3.12 Reference Manual Page 44

8. Accessing WS-In Web Services from Other Systems

Once you have the Web Services software installed and configured on the host, and the
host configuration and WSDL files generated, client programs can call the Web Services
to access COMS transactions.

These client programs can be written in any language that provides a Web Services
interface, such as Visual Basic .NET and Delphi. These development environments can
import the WSDL file WSUtility generates, and automatically generate the necessary
objects and interfaces to allow you to access the Web Services.

The following sub-sections contain information you may require to access WS-In web
services from your client programs.

8.1 Program Transaction MCP Header

In order for the Web Services software to match responses to requests for Program
transactions, and to help the COMS application processing the transactions to identity both
which transaction is being requested and the client, an MCP Header is inserted in front of
the request and response records for all Program transactions.

8.1.1 Request Record MCP Header Fields

The request header consists of the following fields (the length of the field in bytes follows
the name of the field):

TRANSACTION-TOKEN (6)

This field identifies the original request for the RESPONDER program, so the
response can be matched to the request.

TRANSACTION-ID (6)

This numeric field contains the ID of the transaction submitted by the client (the
ID value for each transaction is set using WSUtility).

TRANSACTION-NAME (36)

This field contains the name of the transaction being submitted, with blank fill.
The transaction name will be truncated in this field if it is longer than 36
characters.

REMOTE-IP-ADDRESS (42)

This field contains the IP address of the client that originated the transaction, with
blank fill.

If you are using two-way SSL and the ATLAS web server, you can optionally have the
Web Services software include client certificate information in the MCP Header. The
following optional client certificate fields are available:

 MGSWeb 3.12 Reference Manual Page 45

SUBJECT-COMMON-NAME (50)

This field will contain the common name (CN) from the client certificate’s
“Subject” distinguished name.

SUBJECT-DISTINGUISHED-NAME (200)
This field will contain the client certificate’s entire “Subject” distinguished name.

ISSUER-COMMON-NAME (50)
This field will contain the common name (CN) from the client certificate’s
“Issuer” distinguished name.

ISSUER-DISTINGUISHED-NAME (200)

This field will contain the client certificate’s entire “Issuer” distinguished name.

PUBLIC-KEY-STRENGTH (6)
 This field will contain the client certificate’s public key strength, in bits.

8.1.2 Response Record MCP Header Field

The response record’s MCP Header consists of only the six-byte TRANSACTION-TOKEN.

8.1.3 Important Notes

• The COMS application that processes the Program transaction must move the
TRANSACTION-TOKEN header field from the request record to the response record
before sending the transaction response, or the response will never be delivered to
the client.

• If you enable the client certificate MCP Header options, but you are either using

the MGS Web Server, ATLAS is not using SSL, or ATLAS is not configured to
request a client certificate, the client certificate MCP Header fields will be blank.

• A “distinguished name” consists of a list of “name=value” pairs, where “name”

can be CN (common name), OU (organizational unit), O (organization), L
(location), ST (state), or C (country). There are other possibilities for “name” but
these are the most common.

 MGSWeb 3.12 Reference Manual Page 46

8.2 Stateless and Stateful Transactions

COMS applications can implement their transactions as stateless or stateful.

• Stateless transactions are not dependent on previous transactions; they can be
entered at any time. The data submitted with the transaction contains all of the
information necessary for the application to process it; the application does not
store any station-specific data between transactions. Many COMS Trancode
Based Routing (TBR) applications are stateless – any trancode can be entered at
any time.

• Stateful transactions require the COMS application to remember data between

transactions (the data saved is called “state”). State is usually tied to the
originating station – that is, the application stores the state by station. Multi-screen
transactions (those that require the user to transmit more than one page of data) are
stateful – for instance, the user could not transmit the third page of data before
transmitting the first page.

Some applications implement both stateless and stateful transactions.

8.2.1 Station Transactions

Web Services’ Station transactions can be either stateless or stateful.

The normal submission of a Station transaction via Web Services is stateless – there is a
pool of PSH stations available, and the Web Services DRIVER program selects the first
available station to process each incoming transaction.

However, Web Services also supports stateful transactions, by allowing a client program
to allocate a station for that client’s exclusive use. The client is given a station token,
which is then included by the client in each transaction. The client’s transactions (and
only that client’s transactions) are then all done against the same station. When the client
is done with the station, it is deallocated, and returned to the available pool.

A client program can actually do both stateless and stateful transactions at the same time.
Even if a station has been allocated, the client can still submit a stateless transaction to the
pool of available stations by not specifying the station token in the transaction.

Transmit-Protected Fields

Some MCP applications (such as LINC) use “transmit-protected” fields on their screens to
implement state. Transmit-protected fields are protected in forms mode, but are
transmitted back to the host.

 MGSWeb 3.12 Reference Manual Page 47

The Web Services PSH handles transmit-protected fields automatically for allocated
stations. That is, the PSH saves the data from the transmit-protected fields from each
application response and reinserts the data into the next request automatically. (For
stateless transactions, the PSH fills all transmit-protected fields with spaces.)

8.2.2 Program Transactions

Web Services does not natively support stateful Program transactions; however, either the
IP address of the caller, a client certificate field, or a user token field (added to the request
and response records) could be used, so the COMS application processing the transaction
could identify the client program (and maintain state).

8.2.3 Database Transactions

Web Services’ Database transactions are all stateful. A client program must allocate a
database interpretive interface for its exclusive use. The client is given a database token,
which is then included by the client in each transaction. When the client is done with the
database, it must be deallocated, and returned to the available pool.

 MGSWeb 3.12 Reference Manual Page 48

8.3 WSDL Details

The following WSDL terms are used in this document:

• operation, which is a WSDL name for a procedure you can call via Web Services.
• type, which is a record, containing either the request or response fields for an

operation.
• port, which is a list of available operations for a given COMS window or program,

or DMSII database.
• binding, which ties the port to a transport (HTTP and SOAP).
• service, which is the combination of a binding and a host’s URL.

WSUtility generates one operation and two types for each screen, transaction, and dataset:

• The operation is named <screen name> for Station transactions,
<transaction name> for Program transactions, and <dataset name> for
Database transactions. For example, if you capture a screen in SOMS and name it
ScreenOne, the WSDL operation would also be named ScreenOne.

• The two types are named <operation>Request and <operation>Response;

the first type contains the request fields, and the second type contains the response
fields for the operation. For example, the two types for ScreenOne would be
named ScreenOneRequest and ScreenOneResponse. For the dataset request
type, only key fields are included in the request type.

For Program transactions, WSUtility may also generate types for the SOAP Headers and
any group fields you have defined in the request or response records. The SOAP Header
types will be named <transaction name>RequestHeader (for the request header)
and <transaction name>ResponseHeader (for the response header). The type
created for a group field will be named the same as the field itself (although the name may
be modified slightly to prevent any duplicate type names).

Note that if you enable the Include field length information in the generated WSDL option,
WSUtility will also generate types for each field of a different length.

The WSDL also contains a port for the window, program, or database named
Window<window name>Port for Station transactions, Program<program
name>Port for Program transactions, and Database<database name>Port for
Database transactions. For example, for a window named TEST, the port would be named
WindowTESTPort.

The service declared in the WSDL is called Window<window name>Service,
Program<program name>Service, or Database<database name>Service,
depending on the project type.

 MGSWeb 3.12 Reference Manual Page 49

The operations in the WSDL file use the document/literal binding style.

8.3.1 Allocate and Deallocate Operations

All Station and Database transaction WSDL files also contain two additional operations:
Allocate and Deallocate. These operations can be used when a client needs to
allocate a PSH station or database interpretive interface for its exclusive use, for stateful
transactions.

Station Types

The Station Allocate operation has two types defined for it:

• AllocateRequest contains the request parameters for the Allocate operation:

usercode The usercode for the PSH station; if not specified, the
usercode/password from the parameter file will be used.

password The password for the PSH station; if not specified, a blank
password will be assumed.

accesscode The accesscode for the PSH station; if not specified, the
default accesscode/acpassword from the parameter file will
be used (if required).

acpassword The accesscode password; if not specified, a blank password
will be used.

width The width of the station in columns; the value from the
parameter file will be used if this field is not specified.

height The height of the station in rows; the value from the
parameter file will be used if this field is not specified.

• AllocateResponse contains the response fields for the Allocate operation:

mcpElapsed The elapsed time, in milliseconds, from when the Web

Services software received the transaction until the response
was sent. This time does not include time spent in the Web
Services or ATLAS server.

mcpStation The allocated station’s token.

The Deallocate operation also has two types defined for it:

• DeallocateRequest, which contains only a mcpStation field.
• DeallocateResponse, which contains the mcpElapsed and mcpStation

fields, although it always returns a value of zero in the mcpStation field.

 MGSWeb 3.12 Reference Manual Page 50

Database Types

The Database Allocate operation has two types defined for it:

• AllocateRequest contains the request parameters for the Allocate operation:
usercode This field is not currently used.
password This field is not currently used.

• AllocateResponse contains the response fields for the Allocate operation:

mcpElapsed The elapsed time, in milliseconds, from when the Web
Services software received the transaction until the response
was sent. This time does not include time spent in the Web
Services or ATLAS server.

mcpDatabase The allocated database’s token.

The Deallocate operation also has two types defined for it:

• DeallocateRequest, which contains only a mcpDatabase field.
• DeallocateResponse, which contains the mcpElapsed and mcpDatabase

fields, although it always returns a value of zero in the mcpDatabase field.

8.3.2 mcpElapsed, mcpStation, and mcpDatabase Fields

Station Transactions

All <operation>Request types defined in a Station transaction WSDL file contain a
mcpStation field; you set this field to the token returned in the AllocateResponse
record to submit transactions to your allocated station. If you do not specify a
mcpStation value or set it to zero, the transaction is sent to any available PSH station.

All <operation>Response types defined in a Station transaction WSDL file contain
both a mcpElapsed and a mcpStation field.

Program Transactions

All Program transaction response types contain the mcpElapsed field.

Database Transactions

All <operation>Request types defined in a Database transaction WSDL file contain a
mcpDatabase field; you must set this field to the token returned in the
AllocateResponse record to submit transactions to your allocated database.

All <operation>Response types defined in a Database transaction WSDL file contain
both a mcpElapsed and a mcpDatabase field.

 MGSWeb 3.12 Reference Manual Page 51

9. Configuring WS-Out and HTTP-Out Web Services

Web Services for Unisys MCP supports two types of outbound web service types: WSDL-
based Web Services (which are called a “Web Service,” or WS-Out), and non-WSDL-
based Web Services (which are called an “HTTP Service,” or HTTP-Out).

Enabling an application on the Unisys MCP system to call a WSDL-based Web Service
requires the following steps using the WSUtility program:

• Create a new Web Service project.
• Load the web service’s WSDL file.
• Make any required changes to the request or response record descriptions.
• Generate the host configuration file.
• Generate a COBOL “COPY library” (include file) for the web service.

Enabling an application on the Unisys MCP system to call a non-WSDL-based web
service requires the following steps using the WSUtility program:

• Create a new HTTP Service project.
• Define the request and response records for each operation.
• Generate the host configuration file.
• Generate a COBOL “COPY library” (include file) for the web service.

You can then add code to call the Web Service to your application.

The following sections describe these steps in more detail.

9.1 Running WSUtility

To run the Web Services Utility (WSUtility) program, navigate to the folder you installed
the Web Services PC software to, and double-click the WSUtility.exe file. You can
add a shortcut to your desktop for WSUtility by right-clicking on the WSUtility.exe
file, and clicking the Send To | Desktop menu item.

9.2 WSDL-Based Web Services

To create a new WSDL-based web service (“Web Service”) project, click the File | New |
Web Service project menu item. To open an existing Web Service project, click the File
| Open | Web Services project menu item. Web Service project files have a “.wsf” file
extension.

 MGSWeb 3.12 Reference Manual Page 52

After you have opened or created a new Web Service project, the WSUtility window will
change to look like this:

The WSUtility Web Services Project window

9.2.1 Loading the WSDL File

To load the web service’s WSDL file, enter its URL in the WSDL File Location field, and
click the Load WSDL button. If the WSDL file is on your local hard drive, you can click
the “browse” button to the right of the location field to insert the name of the WSDL file
in the location field.

If the WSDL file load is successful, the ports and operations from the WSDL file will be
displayed in the Navigation Tree control on the left side of the WSUtility window, as
shown below.

 MGSWeb 3.12 Reference Manual Page 53

WSUtility with a WSDL loaded

If one or more errors occur while loading the WSDL file, click on the Messages tab at the
top of the WSUtility window (the Messages tab will be added when the WSDL file load
begins) to see a list of the loading status and error messages. Errors will be displayed in
red.

On the image shown above (the GOOGLE web service), the web service is called
“GOOGLESEARCH”, there is a single port named “GoogleSearchPort”, and there are
three operations, called “doGetCachedPage”, “doSpellingSuggestion”, and
“doGoogleSearch”.

9.2.2 Service Properties

The name displayed for the Web Service is the name from the WSDL “definitions” node,
or the name of the first service defined in the WSDL. WSUtility will convert the name to
uppercase letters. Web Service names are limited to 17 uppercase characters - if the name
from the WSDL file is too long, you must shorten it to 17 or fewer characters.

 MGSWeb 3.12 Reference Manual Page 54

MCP Host Config/Include File Location

You have to enter the DNS name or IP address, port number, virtual directory and SSL
option (and optionally a client certificate name) for the ATLAS or Web Services server on
your MCP system in the MCP Host Config/Include File Location fields. These are needed
so the WSUtility program can transfer the host configuration and COBOL “COPY” files
to the host.

Outbound Connection Settings

If you enter an IP address in the MCP IP Address field, the Web Services software on the
host will use the network adapter that corresponds to that IP address for all outbound
connections for all transactions done to the operations on the selected port. If this field is
blank, the MCP will select the network adapter to be used. WSUtility does not check that
the IP address you enter in this field is valid for the host system.

By default, the WebOut library on the MCP system includes the “Connection: close”
HTTP header in each request, and closes the TCP/IP connection after the response is
received. If the web service server (that provides the web service functionality) supports
persistent connections, you can check the Keep Alive option to greatly enhance transaction
throughput. If this option is checked, the WebOut library includes the “Connection: Keep-
Alive” HTTP header in each request, and it does not close the port file when the
transaction completes.

If you check the Force MCP applications to provide a server URL option, calling MCP
applications will be forced to provide a server URL (the default server URL from the
WSDL will be ignored).

If you select a port in the Navigation Tree, the default server URL for the port will be
displayed in the Port Server URL field. This field is disabled for WSDL-based web
services (you can not modify the URL).

9.2.3 Disabling Web Service Operations

By default, all operations defined in the WSDL file will be included in the host
configuration file uploaded to the host, and will be callable by host programs.

To mark an operation as disabled (so it will not be included in the host configuration file),
select it in the Navigation Tree, then click Edit | Disable operation, or right-click on the
operation and click the Disable operation item on the popup menu. Disabled operations
will be listed in the Navigation Tree with a strikethru font. You can re-enable an
operation on the Edit menu or popup menu as well.

 MGSWeb 3.12 Reference Manual Page 55

You can also disable or enable all operations on a port by selecting the port in the
Navigation Tree, and then clicking the Edit | Disable all operations or Edit | Enable all
operations menu items, or by clicking the same menu items from the popup menu. If you
select the Web Service name in the Navigation Tree, you can enable or disable all
operations on all ports at once.

9.2.4 Request and Response Records

Once the WSDL file has been read in, WSUtility will convert the request and response
message formats defined in the WSDL to flat record descriptions suitable for use by
COBOL programs. The default data conversions are shown below:

WSDL Type COBOL Type
string PIC X(50)
integer PIC S9(11)
boolean PIC X (“Y” or “N”; displayed in WSUtility as “BOOLEAN”)
decimal, float, double REAL
array OCCURS 2 TIMES
<anything else> PIC X(50)

If the WSDL contains field length and array size information, WSUtility will use that
information to set the field’s length and OCCURS values. Otherwise, the default values
will be used.

You can change the length of the “PIC X” string fields, the length of the “PIC S9”
numeric fields, and the value of the OCCURS clause on any array. Alphanumeric (PIC X)
fields are limited to 65,535 characters, numeric fields (PIC S9) are limited to 23 digits,
and entire records are limited to one megabyte (1,048,575 characters).

To edit an operation’s record descriptions, click the operation’s name in the Navigation
Tree on the left side of the WSUtility window. The Operation Propertiess tab will be
automatically selected. As you can see in the image below, the record display is very
similar to a COBOL “01” record description.

 MGSWeb 3.12 Reference Manual Page 56

Operation Response Fields

To modify a field, select it with the mouse – its name, type, length, and occurs values will
then be displayed in the fields above the record display. Any field data that you can not
change (such as the XML tag for the field) will be grayed out and disabled. After you
have changed one or more of the editable values, click the Modify button to apply the
change.

Note: WSUtility adds a REQ- prefix to each field in the request record, and a RSP-
prefix to each field in the response record. This is to ensure that no field names are
COBOL reserved words.

The level numbers have different colors, based on the field type – group fields that are not
arrays are displayed in green; group fields with an OCCURS clause are blue, and
elementary fields are black.

The field names displayed in red are too long; COBOL is limited to 30 character variable
names. You must manually change these names before generating the host COBOL
“COPY” file.

You can check the Show XML tags option to see the XML tag for each field as defined in
the WSDL file.

 MGSWeb 3.12 Reference Manual Page 57

Use the tabs at the bottom of the Operation Fields page to switch between the request,
response and parameter records.

9.2.5 Parameter Records

WSUtility generates a “parameter record” in the COBOL include file for all operations on
every port. The operation parameter record is used by your application to specify the
operation it wishes to call. The COBOL name of each parameter record defaults to
“<operation name>-PARAM”, but you can modify the name to any valid COBOL
identifier.

See the Parameter Record Fields section later in this document for details on the fields in
the operation parameter records.

9.2.6 WS-Out SSL Operation

The use of SSL in WS-Out web services transactions is controlled by the server URL used
when calling the web service (either from the WSDL, or as specified by the application in
the parameter record when it calls the web service). If the URL specifies the Secure
Socket Layer protocol (that is, it starts with “https://”), then SSL will be used for the
outbound web services call. Otherwise, SSL will not be used, and the normal non-secure
HTTP protocol is used for the web service’s transactions.

9.2.7 Complex XML Schemas

WSUtility supports most commonly used XML Schema types and options when importing
a WSDL. The following notes describe the known limitations and other special items of
interest.

• The “mixed” schema option is not supported.

• The “choice” schema option is not fully supported; WSUtility will use the first
specified choice, and ignore the other choices.

• The “anyAttribute” element is supported; WSUtility will generate a special field
for the application to provide attributes and their values. Note that the application
must ensure that the data inserted into this field is valid attribute syntax (ie,
attribute=”value”), as it is not validated by MGSWeb.

• The “any” element, and elements with a type of “anyType”, are also supported in
the request and response records. For these “anyType” fields, the application can
put raw XML in the field in the request record, and MGSWeb will return raw
XML in the field in the response record. Note that it is up to the application to
ensure that the XML it places into request fields is valid XML, as MGSWeb does
not validate the contents of the field.

 MGSWeb 3.12 Reference Manual Page 58

• Only the “Request/Response” transmission primitive is supported;
“Response/Request,” “Request Only” and “Response Only” are not supported.

• The “minOccurs” schema option is completely supported. WS-Out only includes
empty elements if the “minOccurs” value for the element is greater than zero. For
arrays of elements, WS-Out includes at least the “minOccurs” number of elements,
and up the OCCURS value set in WSUtility, if the extra occurrences are non-
blank.

• If numeric fields (integer or floating point) in the request record contain all spaces,
they are not included in the generated XML, unless they are defined in the WSDL
with a “minOccurs” value greater than zero. If a numeric field contains all spaces
and has a “minOccurs” value greater than zero, it will be inserted in the XML as
<tag/>. If a numeric field has a zero value (but is not all spaces), it will be
included in the XML as <tag>0</tag>. One oddity of this behavior is that if a
REAL field in the request record contains the bit pattern 4”404040404040” (value
-275955859520.0), it will not be included in the XML because it is all spaces.

 MGSWeb 3.12 Reference Manual Page 59

9.3 Non-WSDL-Based Web Services

To create a new non-WSDL-based web service (“HTTP Service”) project, click the File |
New | HTTP Service project menu item. To open an existing HTP Service project, click
the File | Open | HTTP Services project menu item. HTTP Service project files have a
“.hsf” file extension.

After you have opened or created a new HTTP Service project, the WSUtility window will
change to look like this:

WSUtility with a new HTTP Service Project

9.3.1 Service Properties

Enter the name of the HTTP Service in the HTTP Service Name field on the “Service
Properties” page. HTTP Service names are limited to 17 uppercase characters.

 MGSWeb 3.12 Reference Manual Page 60

MCP Host Config/Include File Location

You have to enter the DNS name or IP address, port number, virtual directory and SSL
option (and optionally a client certificate name) for the ATLAS or Web Services server on
your MCP system in the MCP Host Config/Include File Location fields. These are needed
so the WSUtility program can transfer the host configuration and COBOL “COPY” files
to the host.

Outbound Connection Settings

If you enter an IP address in the MCP IP Address field, the Web Services software on the
host will use the network adapter that corresponds to that IP address for all outbound
connections for all transactions done to the operations on the selected port. If this field is
blank, the MCP will select the network adapter to be used. WSUtility does not check that
the IP address you enter in this field is valid for the host system.

You use the Default Server URL field to specify the default server URL for the HTTP
Service. Applications can override this value; see the Parameter Record Fields section
later in this document for details.

By default, the WebOut library on the MCP system includes the “Connection: close”
HTTP header in each request, and closes the TCP/IP connection after the response is
received. If the web service server (that provides the web service functionality) supports
persistent connections, you can check the Keep Alive option to greatly enhance transaction
throughput. If this option is checked, the WebOut library includes the “Connection: Keep-
Alive” HTTP header in each request, and it does not close the port file when the
transaction completes.

If you check the Force MCP applications to provide a server URL option, calling MCP
applications will be forced to provide a server URL (the value in the Default Server URL
field will be ignored).

If you do not want the Web Services software to automatically suppress empty array
elements, select the Do not suppress empty XML array elements option.

9.3.2 Operations

An operation is the name WSUtility uses to refer to a web service function to be called by
your MCP-based program. When you define an operation in WSUtility, you must give it a
name, and you must define the fields in both the request record and in the response record.

By default, when you create a new HTTP Service project, WSUtility creates a single port
named newPort_0 with a single operation named newOperation_0. To create additional
operations, click the Edit | Add operation menu item, or right-click the HTTP Service or
port in the Navigation Tree, and select the Add operation item from the popup menu.

 MGSWeb 3.12 Reference Manual Page 61

To rename an existing operation, either select the operation in the Navigation Tree and
click Edit | Rename operation, or right-click on the operation in the Navigation Tree and
select the Rename operation item on the popup menu.

To delete an existing operation, either select the operation in the Navigation Tree and click
the Edit | Delete operation menu item, or right-click on the operation in the Navigation
Tree and select the Delete operation item from the popup menu. You can not delete the
last operation on a port.

9.3.3 Request and Response Records

If you select an operation in the Navigation Tree, the Operation Properties page will be
displayed so you can define the request and response fields, and view the parameter record
fields, for the selected operation. You select which record you want to view using the tabs
at the bottom of the page (“Request Fields,” “Response Fields” or “Parameter Fields”).

The Operation XML Prefix field allows you to specify optional text that will be inserted in
all of the operation’s requests, immediately preceding the XML itself.

Defining a New Field

To define a new field:

• Enter the XML tag for the field in the XML Tag field.
• Select the field’s parent in the Field Parent list. A field’s parent must be a “group”

field; if you select a field in the Field Parent list that is not a “group” field, the
new field will have the same parent as the selected field.

• Enter the field’s COBOL name in the COBOL Name field, or leave this field blank
to use the default COBOL name (which will be based on the field’s XML tag).

• Select the type for the field (either “group”, “string”, “integer”, “boolean”,
“double”, or “attribute”) using the Field Type list.

• Enter the length of the field in the Length field (except for “group” fields, which
can not have a length).

• If the new field is an array, enter the length of the array in the Occurs field (except
for “attribute” fields, which can only occur once).

• Click the Add button.

A “group” field can not have data associated with it; that is, it can not have a length. An
“attribute” field equates to an XML attribute of its parent element; only “group” fields can
have attributes.

 MGSWeb 3.12 Reference Manual Page 62

The following table lists the field types (other than “group”) and their corresponding
COBOL picture clauses:

WSDL Type COBOL Type
string PIC X(<length>)
integer PIC S9(<length>)
boolean PIC X
float REAL
attribute PIC X(<length>)

Modifying and Deleting Existing Fields

To modify a field, select it with the mouse, make the desired changes to the field’s values,
and click the Modify button.

To delete a field, select it with the mouse, and click the Delete button.

You can also use “drag and drop” in the field list to reorder fields, or change a field’s
parent, within the same record.

 MGSWeb 3.12 Reference Manual Page 63

Example Request Record

Here is an example request record for the US Postal Service’s “AddressValidate” web
service:

The WSUtility with a USPS HTTP-Out Example

The level numbers have different colors, based on the field type – group fields that are not
arrays are displayed in green; array groups and fields with an OCCURS value greater than
one are blue, attributes are maroon, and elementary fields are black.

Note: Alphanumeric (PIC X) fields are limited to 65,535 characters, numeric fields (PIC
S9) are limited to 23 digits, and entire records are limited to one megabyte
(1,048,575 characters).

 MGSWeb 3.12 Reference Manual Page 64

9.3.4 Parameter Records

WSUtility generates a “parameter record” in the COBOL include file for each operation
on every port. The operation parameter record is used by your application to specify the
operation it wishes to call. The COBOL name of each parameter record defaults to
“<operation name>-PARAM”, but you can modify the name to any valid COBOL
identifier.

See the Parameter Record Fields section later in this document for details on the fields in
the operation parameter records.

9.3.5 HTTP-Out SSL Operation

The use of SSL in HTTP-Out web services transactions is controlled by the server URL
used when calling the web service (either from the Default Server URL field, or as
specified by the application in the parameter record when it calls the web service). If the
URL specifies the Secure Socket Layer protocol (that is, it starts with “https://”), then SSL
will be used for the outbound web services call. Otherwise, SSL will not be used, and the
normal non-secure HTTP protocol is used for the web service’s transactions.

 MGSWeb 3.12 Reference Manual Page 65

9.4 Generating the Host Configuration File

After you have completed desired changes to the record descriptions, you can generate the
host configuration file. The host configuration file describes the web service in detail, so
the host software can encode the requests and decode the responses.

To generate the host configuration file, click the File | Generate host config file menu
item. You must have the host Web Services software running before doing this, because
WSUtility attempts to open a connection to the host Web Services software to transfer the
configuration file. When the host configuration file has been successfully transferred, the
name of the file created on the host will be displayed in the Send Host Configuration
dialog, as shown below.

WSUtility Host Configuration Update Dialog Box

The host configuration files for both WSDL-based and non-WSDL-based web services are
stored in the WEBSERVICES/HOSTCONFIG/WEBSERVICES/= directory under the same
usercode and on the same family as the Web Services host software.

9.5 Generating the COBOL “COPY library”

If you will be using COBOL to access the web service, you can generate a COBOL
“COPY library” (include file) that you can copy into your COBOL source to declare the
parameter, request and response “01” record descriptions. The include file also will
contain comment records listing the web service, port, and available operation names.

To generate the COBOL include file, click the File | Generate host include file menu
item. As with the host configuration file, the Web Services host software must be running
before you do this. When the include file has been successfully transferred, the name of
the file created on the host will be displayed in the Send Host Configuration dialog, as
shown previously. The include file will be uploaded to the same usercode and family as
the Web Service code files, and will be named:

 MGSWeb 3.12 Reference Manual Page 66

WEBSERVICES/USERFILES/WEBSERVICE/<web/http service name>

Here is an example COBOL include file for the GOOGLESEARCH web service shown
earlier:

000100* WebService GOOGLESEARCH
000200* Port GoogleSearchPort
000300* Operation doGoogleSearch *
000400 01 DO-GOOGLE-SEARCH-PARAM.
000500 03 WEBSERVICE-NAME PIC X(24) VALUE
000600 "GOOGLESEARCH".
000700 03 PORT-NAME PIC X(150) VALUE
000800 "GoogleSearchPort".
000900 03 OPERATION-NAME PIC X(150) VALUE
001000 "doGoogleSearch".
001100 03 OPERATION-SIGNATURE REAL VALUE
001200 18946402.
001300 03 NETWORK-TIME REAL.
001400 03 TRANSACTION-TIMEOUT REAL.
001500 03 TRANSACTION-TRACE REAL.
001600 03 SERVER-LOCATION PIC X(150).
001700 03 SERVER-USERNAME PIC X(60).
001800 03 SERVER-PASSWORD PIC X(60).
001900 03 KEY-NAME PIC X(60).
002000 03 FILLER PIC X(522).
002100 01 DO-GOOGLE-SEARCH.
002200 03 REQ-KEY PIC X(50).
002300 03 REQ-Q PIC X(50).
002400 03 REQ-START PIC S9(11).
002500 03 REQ-MAX-RESULTS PIC S9(11).
002600 03 REQ-FILTER PIC X.
002700 03 REQ-RESTRICT PIC X(50).
002800 03 REQ-SAFE-SEARCH PIC X.
002900 03 REQ-LR PIC X(50).
003000 03 REQ-IE PIC X(50).
003100 03 REQ-OE PIC X(50).
003200 01 DO-GOOGLE-SEARCH-RESPONSE.
003300 03 RSP-RETURN.
003400 05 RSP-DOCUMENT-FILTERING PIC X.
003500 05 RSP-SEARCH-COMMENTS PIC X(50).
003600 05 RSP-EST-TOTAL-RESULTS-COUNT PIC S9(11).
003700 05 RSP-ESTIMATE-IS-EXACT PIC X.
003800 05 RSP-RESULT-ELEMENTS.
003900 07 RSP-ITEM OCCURS 2 TIMES.
004000 09 RSP-SUMMARY PIC X(50).
004100 09 RSP-URL PIC X(50).
004200 09 RSP-SNIPPET PIC X(50).
004300 09 RSP-TITLE PIC X(50).
004400 09 RSP-CACHED-SIZE PIC X(50).
004500 09 RSP-RELATED-INFO-PRESENT PIC X.
004600 09 RSP-HOST-NAME PIC X(50).
004700 09 RSP-DIRECTORY-CATEGORY.
004800 11 RSP-FULL-VIEWABLE-NAME PIC X(50).
004900 11 RSP-SPECIAL-ENCODING PIC X(50).
005000 09 RSP-DIRECTORY-TITLE PIC X(50).
005100 05 RSP-SEARCH-QUERY PIC X(50).
005200 05 RSP-START-INDEX PIC S9(11).
005300 05 RSP-END-INDEX PIC S9(11).
005400 05 RSP-SEARCH-TIPS PIC X(50).
005500 05 RSP-DIRECTORY-CATEGORIES.
005600 07 RSP-ITEM OCCURS 2 TIMES.
005700 09 RSP-FULL-VIEWABLE-NAME PIC X(50).
005800 09 RSP-SPECIAL-ENCODING PIC X(50).
005900 05 RSP-SEARCH-TIME REAL.

 MGSWeb 3.12 Reference Manual Page 67

WSUtility does not currently support generating ALGOL include files, so you will have to
manually create a list of EBCDIC array DEFINEs for the request, response and parameter
records if you want to call the web service from an ALGOL program.

 MGSWeb 3.12 Reference Manual Page 68

10. Using WS-Out or HTTP-Out to Call a Web Service

After generating the host configuration file and the COBOL include files, you can add
code to your COBOL or ALGOL program to call the web service.

To call a web service, your application must call the INVOKE procedure in the
WEBSERVICES/LIBRARY library. The INVOKE procedure accepts four parameters, and
returns an INTEGER result. The return value of the INVOKE procedure will be zero if the
call completed successfully, and non-zero if an error occurs.

10.1 COBOL Syntax

For COBOL, the code to call the INVOKE procedure call is:

01 RESULT-STRING PIC X(256).
.
77 RESULT PIC 9(11) BINARY.
.
<move data to the request record fields>
.
CALL "INVOKE OF WEBSERVICES/LIBRARY"
 USING <parameter record>,
 <request record>,
 <response record>,
 RESULT-STRING
 GIVING RESULT.

10.2 ALGOL Syntax

The ALGOL definition for the INVOKE procedure is:

LIBRARY WEBSERVICES (TITLE=”WEBSERVICES/LIBRARY.”);

INTEGER PROCEDURE INVOKE
 (PARAMETER_RECORD, REQUEST_RECORD,
 RESPONSE_RECORD, RESULT_STRING);
EBCDIC ARRAY PARAMETER_RECORD, REQUEST_RECORD,
 RESPONSE_RECORD, RESULT_STRING [0];
 LIBRARY WEBSERVICES;

 MGSWeb 3.12 Reference Manual Page 69

10.3 INVOKE Procedure Parameters

The first parameter to the INVOKE function is the parameter record for the operation you
want to call. For COBOL applications, the operation parameter records are defined in the
COBOL include file generated by WSUtility; for an ALGOL application, you will have to
manually declare a 1,200 byte EBCDIC array for this parameter. The parameter record
contains the web service, port and operation names for the operation you want to execute,
as well as other control fields. See the next section for details on the parameter record’s
fields.

The second and third parameters to INVOKE are the request and response buffers. For
COBOL applications, these two parameters are defined in the COBOL include file
generated by WSUtility; for ALGOL applications, you will have to declare them manually
in your program. You place the parameter values for the web service call into the request
buffer, and the response values from the call will be placed in the response buffer.

The last parameter, RESULT-STRING, will contain an error message, ending with a null, if
the web service call fails (that is, the return value of the call is not zero). It will be resized,
if necessary, to fit the entire message. If no error occurs, the text “No error” will be
placed into this parameter. You must declare this array in your application.

If you set the TRANSACTION-TRACE field of the parameter record to a non-zero value,
the Web Service software will enable host tracing for this single transaction. The request
and response XML, and the COBOL record field values, will be written to the
WEBSERVICES/LOG file.

10.4 Parameter Record Fields

WSUtility includes a “parameter record” for each enabled operation in the COBOL
include files it generates. The operation parameter records are used by your applications
to call a specific operation. The operation parameter record must be 1,200 bytes (200
words) long.

Each operation parameter record contains the following fields:

WEBSERVICE-NAME (24 characters)
PORT-NAME (150 characters)
OPERATION-NAME (150 characters)

These three fields are used by the web services software to select the operation to
be executed. For COBOL applications, these fields are set to the correct values in
the COBOL include file; you do not have to set them. For ALGOL programs, you
will have to put the correct values in the fields; see the COBOL include file for the
correct values.

 MGSWeb 3.12 Reference Manual Page 70

OPERATION-SIGNATURE (6-byte REAL)

This field contains a value that allows the web services software to verify that the
request and response records for the operation your application is calling match the
operation’s request and response records in the current host configuration file.
This allows the web services software to detect if the COBOL include file
compiled into your application matches the current host configuration file for the
operation your application is calling. For COBOL applications, this field is set to
the correct value for you. For ALGOL applications, you will have to set this field
to the correct value; see the COBOL include file for the correct signature value. If
you set this field to zero, the signature checking will not be done.

NETWORK-TIME (6-byte REAL)

Upon exit from the INVOKE function, this field will contain the network elapsed
time, in milliseconds, for the completed transaction when the operation completes.
Network elapsed time consists of all TCP/IP socket time, including open/close and
send/receive.

TRANSACTION-TIMEOUT (6-byte REAL)

The normal transaction timeout is about three minutes; if you want a shorter
timeout value, you can specify it in this field (in seconds). Set this field to zero to
use the default timeout.

TRANSACTION-TRACE (6-byte REAL)

If your application sets this field to a non-zero value, the raw request and response
XML, and the COBOL record field values, will be written to the
WEBSERVICES/LOG file for just this single transaction.

SERVER-LOCATION (150 characters)

By default, the Web Services software uses the destination server URL specified in
the WSDL (for WS-Out services) or the Default Server URL field of WSUtility’s
Service Properties page (for HTTP-Out services). To use a different server URL,
your application can specify it in this field. The general format of a valid URL is
protocol://hostname:portnumber/directory. The protocol must be either HTTP
or SSL; that is, the URL must start with either “http://” or “https://”. If the URL
does not supply a port number, port 80 will be used for HTTP and port 443 will be
used for SSL. If the Force MCP applications to provide a server URL option is
enabled, the calling application must provide a URL in this field, or an error will
be returned by the INVOKE procedure.

 MGSWeb 3.12 Reference Manual Page 71

SERVER-USERNAME (60 characters)
SERVER-PASSWORD (60 characters)

If the web server requires authentication, you must specify a user name and a clear
text password in these fields so WS-Out or HTTP-Out can authenticate the
connection with the server. MGSWeb supports the following authentication
schemes: Windows NTLM, HTTP Basic and HTTP Digest. MGSWeb uses the
“WWW-Authenticate” HTTP headers returned by the server to automatically
select the authentication scheme to use; if the server supports multiple schemes,
MGSWeb will select a scheme in the following order: Basic first, then NTLM, and
lastly Digest.

While the application does require prior knowledge that a username and password
will be needed for a given WS-Out or HTTP-Out call, knowledge of specifically
which authentication scheme to use is not the application's responsibility.

Note that the Windows NTLM and HTTP Digest authentication schemes are only
supported if the MGSWeb Authentication Extensions are enabled in the MGSWeb
host software AccessKey.

KEY-NAME (60 characters)

If the remote server is configured to use two-way SSL, the calling application can
specify the name of the “key container” containing the client certificate to be used
when connecting to the server.

HTTP-HEADERS (150 characters)

Use this field to specify zero or more custom HTTP headers to be added to the
outbound request. The format of each header in this field should be:

<header name><colon><double quote><value><double quote><space>

The <double quote> characters are optional if the <value> does not contain any
embedded spaces. The following headers are ignored if specified in this field:
“Content-Type”, “Content-Length”, “Transfer-Encoding”, “Authorization”,
“Connection” and “SOAPAction”.

10.5 INVOKE Result Values

The return value of the INVOKE procedure will be zero if the call completed successfully,
and non-zero if an error occurs. The following return values are currently defined:

NO_ERRORV (0)

The web service call completed successfully.

 MGSWeb 3.12 Reference Manual Page 72

INITIALIZATION_ERRORV (1)

Either the web service name in the parameter record is not valid, or the host
configuration file for the specified web service is missing or invalid.

PORT_ERRORV (2)

The port name specified in the parameter record is not valid.

OPERATION_ERRORV (3)

The operation name specified in the parameter record is not valid.

COMMUNICATION_ERRORV (4)

A TCP/IP communication error occurred during the web service call. This can be
caused by the server being offline, or the web service being down or moved to a
different URL.

HTTP_ERRORV (5)

An unexpected HTTP status code (other than 200) was received from the Web
Services server. The RESULT-STRING parameter will contain further details.

XML_FORMAT_ERRORV (6)

The response from the Web Services server was not valid XML.

XML_PROCESSING_ERRORV (7)

The XML parser generated an error; the RESULT-STRING parameter will contain
the XML parser’s error.

SOAP_FAULT_ERRORV (8)

The web service response contained a SOAP fault; the RESULT-STRING
parameter will contain the SOAP fault code and SOAP fault string.

RESPONSE_ERRORV (9)

An unexpected response was received; that is, the parameters of the response did
not match the definition in the host configuration file.

WEB_SERVICES_DISABLEDV (10)

Outbound Web Services calls are not enabled in your MGSWEB access key.

 MGSWeb 3.12 Reference Manual Page 73

HTTP_SERVICES_DISABLEDV (11)

 Outbound HTTP services calls are not enabled in your MGSWEB access key.

REQUEST_BUFFER_ERRORV (12)

The request buffer is too short. For COBOL applications, this error is the result of
passing in the wrong request buffer to the INVOKE function.

RESPONSE_BUFFER_ERRORV (13)

The response buffer is too short. For COBOL applications, this error is the result
of passing in the wrong response buffer to the INVOKE function.

SIGNATURE_ERRORV (14)

The signature value in the operation parameter array does not match the signature
value from the host configuration file for the operation. This error is caused by a
mismatch between the copy library included into the calling application and the
current host configuration file.

The most common reason for this is that the request or response records have been
changed and a new host configuration file re-generated, but either the copy library
was not also re-generated or the application was not re-compiled using the new
copy library.

PARAM_ARRAY_ERRORV (15)

The operation parameter array was too short (it must be 1,200 bytes long).

WORKER_ABORT_ERRORV (16)

The WEBSERVICES/WEBOUT worker task aborted while executing the
application’s transaction. This error can only be returned if the application sets the
TRANSACTION-TIMEOUT field in the parameter record to a non-zero value.

TIMEOUT_ERRORV (17)

The outbound web services transaction timed out and was aborted. This error can
only be returned if the application sets the TRANSACTION-TIMEOUT field in the
parameter record to a non-zero value.

URL_ERRORV (18)

 MGSWeb 3.12 Reference Manual Page 74

The URL specified in the SERVER-LOCATION field in the parameter record is
not valid; either the protocol is not HTTP or SSL, or the port number is out of
range.

10.6 Host Tracing

The easiest way to enable host tracing for your WS-Out or HTTP-Out transactions is to set
the TRANSACTION-TRACE field in the parameter record to a non-zero value. This will
cause MGSWeb to write trace information to the WEBSERVICES/LOG file for the single
transaction.

You can also enable host tracing for a specific project using WSUtility’s Tracing menu,
the TRACE operator command to the DRIVER program, or by adding the TRACE
command to the WEBSERVICES/PARAM file.

When the host trace option is enabled for a project, all transactions to that Station,
Program, Database or WebService project cause the request and response XML, and the
contents of the COBOL input and output records, to be written to the
WEBSERVICES/LOG file. All message traffic is included in the tracing information,
including the HTTP headers for WS-Out and HTTP-Out requests.

 MGSWeb 3.12 Reference Manual Page 75

11. Web Services for Unisys MCP Sample Programs

This section details how to set up and run the WS-In and WS-Out samples included with
the Web Services for Unisys MCP release.

Before running any of these sample programs, you must have already installed and started
the Web Services for Unisys MCP host software. For detailed installation instructions, see
section 2 of this document.

11.1 WS-In Sample Program

The WS-In sample consists of a COMS direct window program, called WEBINSAMPLE,
that converts a 50 character field from lower case to upper case characters and outputs the
Unisys MCP system’s host name. The sample program can handle input from either a
station or from the Web Services RESPONDER program.

The following sections contain detailed instructions for compiling and defining the sample
COMS program on your MCP system.

11.1.1 Compiling the Sample COMS Program

The following steps are necessary to compile the WS-In sample COMS program:

1. Log on to CANDE under the usercode you installed the host software under (or a
privileged usercode if you installed the Web Services software un-usercoded).

2. To compile the WS-In sample COMS program with the DMALGOL compiler,
enter the following command:

COMPILE WEBSERVICES/SAMPLES/WEBIN/UPPERCASE

3. If you want to use the ALGOL compiler instead, enter the command:

COMPILE WEBSERVICES/SAMPLES/WEBIN/UPPERCASE WITH ALGOL

The compiled program will be named:

OBJECT/WEBSERVICES/SAMPLES/WEBIN/UPPERCASE

11.1.2 Configuring the Sample COMS Program

The WS-In sample COMS load deck contains the commands necessary to create a COMS
program, window and agenda, all named WEBINSAMPLE, in the COMS CFile. To load
the WS-In sample COMS load deck:

 MGSWeb 3.12 Reference Manual Page 76

1. Transfer to the COMS Utility window with the command ?ON UTILITY.

2. Go to the Load screen by entering the command GO LO in the Action field.

3. On the Load screen, enter the LO command in the Action field and
(<usercode>)WEBSERVICES/SAMPLES/WEBIN/COMSLOADDECK ON
<family> in the Load File Title field (where <usercode> is the usercode you
loaded the Web Services software under, and <family> is the family you loaded
the software to), then transmit.

4. You should get the message “Load Command was successfully completed” at the
bottom of the screen.

If you are running the Web Services software under a usercode, or you loaded the Web
Services software un-usercoded to a family other than DISK, you will need to modify the
program definition for the WS-In sample COMS program. To do this:

1. Go to the Utility Program screen with the command GO P in the Action field.

2. On the Program screen, enter the INquire command in the Action field,
WEBINSAMPLE in the Program Name field, and press transmit.

3. Enter the MOdify command in the Action field.

4. If you are running the Web Services software under a usercode, enter that usercode
in the USERCODE field. If you did not load the Web Services software to the
usercode’s primary family, add ON <family> (where <family> is the family you
loaded the Web Services software to) to the end of the program title in the TITLE
field.

5. If you are running the Web Services software un-usercoded, but you did not load
the software to family DISK, add ON <family> (where <family> is the family you
loaded the Web Services software to) to the end of the program title in the TITLE
field.

6. Press transmit to store your changes.

Close the Utility window with the command ?CLOSE.

11.1.3 Running the WEBINSAMPLE Visual Basic Program

After you have compiled and defined the WEBINSAMPLE COMS program on the Unisys
MCP system, you can run the corresponding Visual Basic .NET program, also called
WEBINSAMPLE, on your PC.

 MGSWeb 3.12 Reference Manual Page 77

The WS-In sample program, called WebInSample.exe, is located in the Samples\VB
Project\ directory. It allows you to call the WEBINSAMPLE web service on the
Unisys MCP system using either a Station transaction or a Program transaction.

Note: In order for Program transactions to work, you must have defined and enabled the
Web Services RESPONDER program on the Unisys MCP system.

The WEBINSAMPLE window is shown below:

Web-In Sample Program Window

Before attempting to do any transactions, make sure you enter the TCP/IP host name of
the Unisys MCP system you are running the Web Services software on in the MCP Host
Name field. If you changed the port number from the default value (8080) in the
WEBSERVICES/SERVER/PARAM file, or you are using ATLAS as your web server, you
must also change the port number in the Port Number field.

Clicking the Submit Station Transaction button submits a Station transaction to the
WEBINSAMPLE WS-In web service. Clicking the Submit Program Transaction button
submits a Program transaction to the WEBINSAMPLE WS-In web service.

Status messages are added to the list box at the bottom of the window.

11.1.4 Deleting the COMS Sample Program

To delete the sample program from the COMS CFile:

1. Disable the WEBINSAMPLE program with the command ?DISABLE
PROGRAM WEBINSAMPLE.

 MGSWeb 3.12 Reference Manual Page 78

2. Disable the WEBINSAMPLE window with the command ?DISABLE WINDOW
WEBINSAMPLE.

3. Transfer to the COMS Utility window with the command ?ON UTILITY.

4. Go to the Load screen by entering the command GO LO in the Action field.

5. On the Load screen, enter the LO command in the Action field and
(<usercode>)WEBSERVICES/SAMPLES/WEBIN/COMSUNLOADDECK
ON <family> in the Load File Title field (where <usercode> is the usercode you
loaded the Web Services software under, and <family> is the family you loaded
the software to), then transmit.

6. You should get the message “Load Command was successfully completed” at the
bottom of the screen.

11.2 WS-Out Sample Program

The WS-Out sample consists of a COBOL74 program on the Unisys MCP system, called
WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR, that calls a currency
conversion web service on the www.webservicex.net web site.

You will need to compile this program on your MCP system before you can run it.

11.2.1 Compiling the Sample Program

To compile the WS-Out sample program, log on to CANDE under the usercode you
installed the host software under (or a privileged usercode if you installed the Web
Services software un-usercoded). Use the following command to compile the COBOL74
program:

COMPILE WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR

The compiled program will be named:

OBJECT/WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR

11.2.2 Running the Sample Program

The WS-Out sample program will call the INVOKE procedure in the
WEBSERVICES/LIBRARY, which will load the host configuration file for the currency
conversion web service (which is called
WEBSERVICES/HOSTCONFIG/WEBSERVICE/CURRENCYCONVERTOR) and then call the
web service on www.webservicex.net to convert US dollars to Euros.

 MGSWeb 3.12 Reference Manual Page 79

To run the WS-Out sample program, log on to CANDE under the usercode you installed
the host software under (or a privileged usercode if you installed the Web Services
software un-usercoded).

To make sure DISPLAYs will be shown on your terminal, enter the command:

SO MESSAGE

To run the program, enter the command:

RUN WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR

The result of the web service call will be DISPLAYed on your terminal. For example:

R WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR
#RUNNING 5096
#5096 MGSWEB_WEBOUT:Loading (MGS)WEBSERVICES/HOSTCONFIG/WEBSERVICE/
 CURRENCYCONVERTOR ON WORK.
#5098\5099 BOT (MGS)WEBSERVICES/WEBOUT/WORKER
#5096 DISPLAY:One US dollar is worth 0.7302 Euros (network time was 18441ms).
#ET=18.9 PT=0.1 IO=0.0

11.3 Included Sample Files

The WSUtility Program project for the WS-In sample program, called
WEBINSAMPLE.psf, is included in the Samples\ directory.

You can view the SOMS project for the WS-In sample Station transactions by opening the
SOMS project in the Samples\SOMS Project\WebInSample\ directory. You can
also open this SOMS project using WSUtility to see the Station transaction settings.

If you want to view the source code for the WS-In sample program, the Visual Studio
.NET project is located in the Samples\VB Project\WebInSample\ directory.

The Web Services project file for the WS-Out sample, called
CURRENCYCONVERTOR.wsf, is located in the Samples\ directory. You can open this
project file with WSUtility.

Unisys MCP Sample Files

The following Unisys MCP files are included with the Web Services for Unisys MCP
software:

WEBSERVICES/SAMPLES/WEBIN/UPPERCASE
This is the WS-In sample COMS program; it supports transaction from both
stations (Station transactions) and the RESPONDER program (Program
transactions).

 MGSWeb 3.12 Reference Manual Page 80

WEBSERVICES/SAMPLES/WEBIN/COMSLOADDECK
This file contains the commands necessary to define the COMS program, window
and agenda for the WS-In sample COMS program.

WEBSERVICES/SAMPLES/WEBIN/COMSUNLOADDECK
This file contains the commands necessary to delete the COMS program, window
and agenda for the WS-In sample COMS program from the COMS CFile.

WEBSERVICES/HOSTCONFIG/WINDOW/WEBINSAMPLE
This is the host configuration file that supports Station transactions for the WS-In
sample web service.

WEBSERVICES/HOSTCONFIG/PROGRAM/WEBINSAMPLE
This is the host configuration file that supports Program transactions for the WS-In
sample web service.

WEBSERVICES/SAMPLES/WEBOUT/CURRENCYCONVERTOR
This is the WS-Out sample COBOL74 program that calls a currency conversion
web service on the www.webservicex.net web site.

WEBSERVICES/HOSTCONFIG/WEBSERVICE/CURRENCYCONVERTOR
This is the host configuration file that supports calling the currency conversion
web service.

WEBSERVICES/USERFILES/WEBSERVICE/CURRENCYCONVERTOR
This is the COBOL copy library, generated by the WSUtility program, that defines
the request, response and parameter records for calling the currency conversion
web service. It is used by the WS-Out sample COBOL program.

Windows PC Sample Files

The following PC sample files and directories are included with the Web Services for
Unisys MCP release (in the Samples\ directory):

WindowWEBINSAMPLE.wsdl
This is the WSDL file for Station transactions, generated by WSUtility, for the
WS-In sample web service.

ProgramWEBINSAMPLE.wsdl
This is the WSDL file for Program transactions, generated by WSUtility, for the
WS-In sample web service.

WEBINSAMPLE.psf
This is the “program settings file” (psf) for the WSUtility Program project for the
WS-In sample web service. You can open this project file in WSUtility.

 MGSWeb 3.12 Reference Manual Page 81

SOMS Project\
This directory contains is the SOMS project files for the WS-In sample Station
transactions. (SOMS is used to define the fields on Unisys MCP application
screens.) You can open this project in either SOMS or in WSUtility.

VB Project\WebInSample.exe
This is the sample Visual Basic .NET program that calls the WS-In sample COMS
program using either Station or Program transactions.

VB Project\WebInSample\
This directory contains the Visual Studio 2005 project for the sample Visual Basic
.NET WS-In program. You can open the entire project using Microsoft Visual
Studio, or use any text editor (such as NotePad) to open the file VP
Project\WebInSample\WebInSample\Form1.vb to view the VB source for
calling the web service.

CURRENCYCONVERTOR.wsf
This is the “web service settings file” (wsf) for the WSUtility Web Service project
for the WS-Out sample web service. You can open this project file in WSUtility.

 MGSWeb 3.12 Reference Manual Page 82

Appendix I Release Notes

This section documents the technical changes made to the MGSWeb software since the
1.02 release.

I.1 Release 1.03

The changes made as part of the 1.03 release are as follows:

1. The Web Services software will now automatically enable and disable the
RESPONDER program when the DRIVER program initializes and terminates. A new
parameter file command allows the user to control this feature ("ENABLE_RESPONDER =
ON | OFF;"); the default setting for the new command is "ON".

2. The Web Services software now supports "temporary" access keys. Temporary keys
work on any MCP system for a limited amount of time (an expiration date is required in a
temporary key).

3. The major individual Web Services features (WS-In, WS-Out and HTTP-Out) can now
be disabled in the access key.

4. The Web Services parameter file scanner now properly handles lower case characters in
the parameter file.

5. The Web Services PSH library now terminates more quickly after the rest of the
software has terminated (the PSH library was waiting up to five minutes on previous
releases; it now will wait no more than 30 seconds before terminating).

6. The WEBIN sample COMSLOADDECK file has been enhanced to include a 30 second
time-out for the sample program, so the program will terminate 30 seconds after the last
user input.

7. A new COMSUNLOADDECK file has been added to the WEBIN samples files to
delete the COMS entities added by the COMSLOADDECK file.

8. When a new WS-Out or HTTP-Out host configuration file was generated and uploaded
to the host, the DRIVER program would continuously link to, and immediately delink
from, LIBRARY until the DRIVER program was terminated and restarted. This has been
corrected.

9. The WSUtility program has been enhanced to prompt the user if there are unsaved
changes to the current project when the user attempts to create a new project, open an
existing project, or exit the program.

 MGSWeb 3.12 Reference Manual Page 83

10. The WSUtility program will now validate the current project’s configuration before
generating the host configuration file or the host include file. This will prevent the utility
from creating invalid host configuration and include files.

11. If a WS-Out or HTTP-Out transaction received an invalid HTTP response from the
web services server, it would report an “operation timed out” error. This has been
corrected.

12. All error messages generated by WSUtility are now displayed as message boxes,
rather than just as text in the status bar at the bottom of the WSUtility window.

13. A new testing feature has been added to WSUtility for WS-In transactions. After a
station, program or database web service has been defined, and the host configuration file
has been generated, you can use the new “Test” page to submit a transaction to the host
software and view the response. The Test page also contains an “Allocate” button to
allocate a station or database on the host, so you can submit transaction to a web service
that does not permit stateless transactions.

14. The WEBSERVICES/LIBRARY code file has been renamed to
WEBSERVICES/WEBOUT, and a new WEBSERVICES/LIBRARY has been
implemented. The new LIBRARY will allow WS-Out and HTTP-Out users to install new
software releases without bringing their applications down (this feature is not completely
implemented yet). Users should still use the WEBSERVICES/LIBRARY library in their
applications; they should not link directly to the WEBOUT library.

15. WS-Out transactions now support both “rpc/encoded” and “document/literal” web
services.

16. WS-Out and HTTP-Out transactions also now support elements of type "any" and type
"schema" in response messages. These elements will contain raw XML data when
received by the MCP application.

17. WS-In's web services have been changed from the “rpc/encoded” binding style to
the “document/literal” binding style. This will require existing WS-In sites to do the
following for existing web services:

1. Regenerate the WSDL and host configuration files.

2. Re-import the new WSDL into their development environment for each
application.

3. Make minor changes to their source code (the request record was called
"<operation>Type", and it is now called "<operation>Request"; the response
record was called "<operation>ResponseType", and it is now called
"<operation>Response").

4. Re-compile their applications.

 MGSWeb 3.12 Reference Manual Page 84

18. The WSUtility ASP project files have been updated to generate “document/literal”
format transactions.

19. The WS-In host software’s error messages that are sent to the client have been
improved to better explain the exact problem with the request data.

20. A new item, “MCP-NETWORK_TIME”, will be automatically added to all WS-Out
and HTTP-Out response records. This item will contain the network time, in
milliseconds, for the transaction (network time includes all TCP/IP connection operations,
including open/close and send/receive). This change requires that sites regenerate all
WS-Out and HTTP-Out host configuration and COBOL include files, and recompile
their applications.

21. The MGS Web Services server has been enhanced to support persistent connections
for WS-In transactions (ATLAS already supports persistent connections). Note that the
MGS Web Services server does not support transaction pipelining over persistent
connections (the ATLAS server does support pipelining).

22. The “Keep-Alive” option has been added to WSUtility for WS-Out and HTP-Out
projects, to support persistent connections for outbound transactions.

23. WS-Out and HTTP-Out transactions were not timing out the TCP/IP port open attempt
after 60 seconds (if for some reason the port file could not be opened); this has been
corrected.

24. XML references starting with “&#x” (hex literals) in field data could cause a DRIVER
worker stack “INVALID INDEX @ (00068200[XML])” fault; this has been corrected.

25. Minor changes have been made to WS-In and WS-Out to make them more compatible
with the WS-I Basic Profile Version 1.1 specification.

I.2 Release 2.00

The changes for the 2.00 release are as follows:

1. Secure Socket Layer (SSL) connections are now fully supported for both inbound and
outbound web services transactions. WSUtility now supports connecting to the host via
an SSL connection to transfer host configuration and COBOL include files, and for testing
inbound web services. The WS-Out host software now supports outbound SSL
connections to the web services server (to support SSL, the WEBSERVICES/WEBOUT
library now uses sockets via the SOCKETSUPPORT library, rather than
TCPIPNATIVESERVICE port files, for outbound connections). Note that the MGS Web
Server, included with the host software, does not support inbound SSL connections; you
must use ATLAS for inbound SSL.

 MGSWeb 3.12 Reference Manual Page 85

2. The ATLAS command in the WEBSERVICES/PARAM file has been deimplemented;
the WEBSERVICES/DRIVER program will now detect being linked to by ATLAS
automatically.

3. The HTTP_SERVER command in the WEBSERVICES/PARAM file has also been
deimplemented; the title of the MGSWeb Web Services HTTP Server code file is now
passed to the WEBSERVICES/DRIVER program via a task attribute.

4. The status of the RESPONDER program (whether running or not) has been added to the
response to the DRIVER program’s “Status” command.

5. WSUtility now allows you to specify the host’s virtual directory name for Web Services
and HTTP Services. This is used by WSUtility, along with the host name, port number
and SSL option, to transfer host configuration and COBOL include files to the host. On
previous releases, the virtual directory name had to be “HostWebServices”.

6. The parameters to the INVOKE procedure in WEBSERVICES/LIBRARY for outbound
web services calls have been changed. The first three parameters to INVOKE on previous
releases (web service name, port name, and operation name) have been combined into a
single “parameter array” that is generated by WSUtility and included in the application
copy library. The application selects the operation it wishes to execute by specifying the
corresponding operation’s parameter array in the INVOKE call. The COBOL 01 name of
each operation’s parameter array can be set by the user via the new “Parameter Fields” tab
on the “Operation Properties” page (the default name of each parameter array is
“<operation name>-PARAM”).

7. The field MCP-NETWORK-TIME, that was being added to the response record for all
outbound web services (both Web Service and HTTP Service), has been moved to the
operation parameter array as NETWORK-TIME. The old field will automatically be
removed from all response records when you load the project into WSUtility.

8. A “per call” timeout value has implemented for outbound web service calls. To specify
a timeout value for a web services call, the application must set the TIMEOUT field of the
operation’s parameter array to the timeout value in seconds. If the web services call takes
longer than the timeout value, the operation will be aborted and a “transaction timed out”
error will be returned.

(To be able to abort a connection attempt that exceeds the timeout value, the WEBOUT
library now uses a "worker" task for each allocated socket. The worker task will be
started once and reused any time that socket is re-used, unless a transaction needs to be
aborted due to a timeout. If an abort is necessary, the worker task will be terminated (via
a P-DS) and then will be re-started the next time the socket is re-used. Note that the
worker task will not be used if the timeout value in the parameter array is zero; instead,
the default socket connection timeout of three minutes will be used.)

9. A new value, called a “signature”, has been implemented to allow the INVOKE function
in the WEBOUT library to detect when the host configuration file for a given operation

 MGSWeb 3.12 Reference Manual Page 86

does not match the copy library included into the calling application. The signature value
for an operation is stored in the operation’s parameter array, and is based on the number of
fields in the operation’s request and response records, as well as each field’s type, length
and OCCURS value. As long as the fields in the request and response records of a given
operation are not changed, the signature of that operation will stay the same.

10. The following new result values can be returned by the INVOKE function on this
release:

WEB_SERVICES_DISABLEDV (10)

Outbound Web Services calls are not enabled in your MGSWEB access key.

HTTP_SERVICES_DISABLEDV (11)

 Outbound HTTP services calls are not enabled in your MGSWEB access key.

REQUEST_BUFFER_ERRORV (12)

The request buffer is too short; for COBOL applications, this error is the result of
passing in the wrong request record to the INVOKE function.

RESPONSE_BUFFER_ERRORV (13)

The response buffer is too short; for COBOL applications, this error is the result of
passing in the wrong response record to the INVOKE function.

SIGNATURE_ERRORV (14)

The signature value in the operation parameter array does not match the signature
value from the host configuration file for the operation. This error is caused by a
mismatch between the copy library included into the calling application and the
current host configuration file. The most common reason for this is that the
request or response records have been changed and a new host configuration file
re-generated, but either the copy library was not also re-generated or the
application was not re-compiled using the new copy library.

PARAM_ARRAY_ERRORV (15)

The operation parameter array was too short; it must be 600 bytes long.

WORKER_ABORT_ERRORV (16)

The WEBSERVICES/WEBOUT worker task aborted while executing the
application’s transaction. This error can only be returned if the application sets the
TIMEOUT field in the parameter record to a non-zero value.

TIMEOUT_ERRORV (17)

 MGSWeb 3.12 Reference Manual Page 87

The outbound web services transaction timed out and was aborted. This error can
only be returned if the application sets the TIMEOUT field in the parameter record
to a non-zero value.

11. (The changes in this note have been backed out by version 2.01) A new “Port
Properties” page has been implemented in WSUtility for Web Service and HTTP Service
projects. This page allows you to set the destination “Server URL” for HTTP Service
ports, and the “keep alive” option and outbound IP address the WEBOUT sockets should
use for both Web Service and HTTP Service ports.

Also, HTTP Service projects can now have multiple ports declared, and those ports are
now visible in WSUtility’s Navigation Tree. This is to allow a single HTTP Service
project to declare the same operations on different ports with different server URLs. For
example, you can now declare the same set of operations on a “Production” port and a
“Development” port, with the Production port’s server URL pointing to the production
system and the Development port’s server URL pointing to a development system.

To aid in the management of multiple ports with the same list of operations, WSUtility
now supports a “Clone port” function for HTTP Service projects. If you select a port in
the Navigation Tree and click the Edit | Clone port menu item, or right-click on the port in
the Navigation Tree and click the Clone port item on the popup menu, a new port will be
created that is a clone of the selected port, including all of its settings and operations.

12. The MGSWeb host software will be compiled with the 51.1 compiler as of July 6,
2007.

I.3 Release 2.01

1. The INTERFACE library has been enhanced to prevent multiple copies of the DRIVER
program from running at the same time (when started from the same set of code files).

2. The SERVER program has been patched to prevent it from terminating when any AX
command is entered – it now requires the AX STOP command before it will terminate.

3. WS-Out and HTTP-Out now allow the calling application to specify a server URL
when calling the INVOKE procedure; see the SERVER-LOCATION field in the Parameter
Record Fields section of this document for details.

4. WS-Out and HTTP-Out now support “Basic” HTTP Authentication; see the SERVER-
USERNAME and SERVER-PASSWORD fields in the Parameter Record Fields section of
this document for details.

 MGSWeb 3.12 Reference Manual Page 88

I.4 Release 2.02

1. WS-Out now supports SOAP “Header” fields on this release. Also, WS-Out support for
element attributes has also been implemented (HTTP-Out already supported element
attributes).

2. On this release, WSUtility now uses the “maxLength” and “totalDigits” XML schema
restrictions to set the length of string and numeric fields (rather than using the default
lengths of 50 characters for string fields and eleven digits for numeric fields).

3. If a web service was using the “document/literal” message style, and the request
message contained elements from multiple namespaces, the WEBOUT library was not
building the request XML correctly (only the outer-most namespace was included in the
message). This has been corrected; the WEBOUT library will now include all required
namespaces in the request XML. You must re-generate the host configuration file for all
affected web services using WSUtility v2.02 to correct this problem.

4. The maximum field length for numeric fields has been increased from eleven digits to
23 digits on this release. The default length for numeric fields when importing a WSDL
into WSUtility is still eleven digits, however.

I.5 Release 3.00

1. SOAP Header field support has been implemented for WS-In Program transactions on
this release. WSUtility has been enhanced to allow you to add fields to the SOAP Header
or to the SOAP Body of the input and output messages. (SOAP Headers are not
supported, nor required, for inbound Station or Database transactions.)

2. WS-In Program transactions have been enhanced to allow field groups and field group
arrays. On previous releases, the Program transaction input and output records had to be
flat structures. On this release, you can add group fields to the input and output records.
Group fields can contain one or more child fields (which also can be group fields), and can
occur more than once (they can be arrays).

3. The Program transaction header fields have been enhanced on this release. The IP
address field in the transaction input header has been increased from 18 to 42 characters to
allow for IPv6 addresses, optional SSL client certificate Subject and Issuer fields have
been implemented, and the transaction output header has been reduced to six bytes
(containing only the transaction token). A Program project can still be configured to use
the old style 60 character headers, however (old style headers will be deimplemented in a
future release).

4. WSUtility can now optionally generate a COBOL copy library for a Program project.
You can use the COBOL copy library when writing the COMS application program to
handle the inbound Program transactions.

 MGSWeb 3.12 Reference Manual Page 89

5. WSUtility now displays Program transactions input and output records in a COBOL 01
record format, and lets you specify both XML and COBOL names for each field. The
COBOL names are used when generating the COBOL copy library for the Program
project. Also, WSUtility now also displays the total number of bytes in each input and
output record.

6. WSUtility now allows you to specify an SSL client certificate it can use to
communicate with the MCP system (to upload host configuration and COBOL include
files). A valid client certificate is required if ATLAS is configured to require a client
certificate for the port being used for the MGSWeb application. (The specified client
certificate will only be used by WSUtility.)

7. WS-Out and HTTP-Out now allow you to specify a client certificate for MGSWeb to
use when connecting outbound to a web services server that uses two-way SSL. You
specify the name of the client certificate key in a new field called KEY-NAME in the
operation parameter record. (The key must have first been stored in the Socket Keys
container in Unisys Security Center.)

8. A new "Force MCP application to provide a server URL" option has been implemented
for WS-Out and HTTP-Out web services. If this option is set, applications must provide a
server URL in the SERVER-LOCATION field of the operation's parameter array when
calling the INVOKE procedure (the default server URL stored in the host configuration
file is ignored).

I.6 Release 3.01

1. WS-In Program transactions can now contain fields with the following new data types
(in addition to group, alpha and numeric fields):

• base64: The field will contain data encoded with the base64 encoding algorithm.
The DRIVER program will automatically convert the data from base64 to binary,
and the converted binary data will be inserted in the record passed to the COMS
application. The field length is still limited to less than 64K bytes.

• stream: When the input data is received, all data from each field with this type
will be converted from ASCII to EBCDIC and written directly to a stream file on
the MCP system. In the request record passed to the COMS application, the field
will contain the stream file title (instead of the data itself). It is up to the
application to process the data in the stream file and remove the file if necessary.
“stream” fields are 100 characters long in the request record (long enough to
contain the file title), but the inbound data can be of any length.

• base64Stream: This type is a combination of the base64 and stream types; the
input data for a field of this type will be converted from base64 to binary and
written directly to a stream file. The field will contain the title of the stream file
(instead of the data itself) when the record is passed to the COMS application. It is

 MGSWeb 3.12 Reference Manual Page 90

up to the application to process the data in the stream file and remove the file if
necessary. “base64Stream” fields are 100 characters long in the request record
(long enough to contain the file title), but the inbound data can be of any length.

These new field data types can only be used with fields in the Request record; they are not
allowed in the Response record.

The stream files will be created under the same usercode as the MGSWeb code files, in
the WEBSERVICES/TEMPFILES/= directory. By default, they will be stored on the same
family as the MGSWeb code files. They are created EXTMODE set to OCTETSTRING.

2. A new WEBSERVICES/PARAM command, STREAM_FAMILY, has been
implemented to allow you to specify the family on which “stream” and “base64stream”
stream files will be created. By default, inbound stream files will be created on the same
family the MGSWeb code files are on.

3. Because of possible naming conflicts, COBOL include files created by WSUtility for
WS-Out and HTTP-Out projects will now be named:

WEBSERVICES/USERFILES/WEBSERVICE/<name>

And COBOL include files created by WSUtility for WS-In Program projects are named:

 WEBSERVICES/USERFILES/PROGRAM/<name>

I.7 Release 3.02

1. WSUtility now properly imports WSDL files that use either schema or WSDL “import”
statements. Previous releases of WSUtility either ignored the “import” statements, or
possibly faulted.

2. When importing a WSDL, WSUtility now correctly handles non-group schema
elements that have one or more attributes associated with them. WSUtility now generates
the correct COBOL source code for this type of element, and the MCP software generates
correctly formed XML for them.

3. The host software now resets the transaction timeout timer for inbound Program
transactions each time additional data is received from the web server. This allows
inbound Program transactions to contain very large amounts of “base64Stream” data
without timing the transaction out.

4. On previous releases, it was possible for the timing out of a transaction to cause a fault
in the MGSWeb host software. This has been corrected.

5. WSUtility now correctly handles the “parts” attribute in the “soap:body” element in the
“binding” section of an imported WSDL.

 MGSWeb 3.12 Reference Manual Page 91

6. WSUtility will now ignore any “documentation” nodes within the “message” section of
an imported WSDL.

7. The MGSWeb software can only handle importing WSDL operations that use the
“request/response” transmission primitive. This restriction will be documented in the
MGSWeb Reference Manual.

8. When importing a WSDL containing an operation that declares more than one
“soap:header” element for an operation in the “binding” section, WSUtility will now
generate a warning message that only the first “soap:header” element for the operation
will be processed. This is not a change of behavior; only the warning message is new.

9. A “include field length information” option has been implemented for Window,
Program and Database projects. If this option is checked, field length information will be
included in the generated WSDL file. Note that this option can greatly increase the size
and complexity of the generated WSDL.

10. WSUtility and the host software can now handle much larger imported WSDLs.
Previous releases were limited to 256 elements per message; this limit has been increased
to 2,048 elements per message. This fix also allows WSUtility to generate correct
COBOL include files for heavily nested elements.

11. WSUtility now automatically saves the modified COBOL names, field lengths and
OCCURS values for all elements before reloading a WSDL. This allows you to reload a
modified WSDL without losing all of your changes. Modified COBOL names (that are
different from the default COBOL name WSUtility generated from the XML name) are
also now displayed in blue in the field list.

12. WSUtility can now handle empty complex types (a complexType with no elements) in
the XML Schema when importing a WSDL. These types are converted to single-character
strings in the COBOL record (PIC X). Also, other enhancements have been made to
handle larger, and more complex, WSDLs.

13. The MCP Header “transaction name” field in the Program transaction request record
has been increased from 18 to 36 characters, and a new numeric “transaction ID” field has
been added. (The transaction ID value can be used by Program transaction applications to
detect which transaction is being submitted by the client.) Also, WSUtility now allows
you to set the transaction ID value for all transactions. Note that this change requires
you to regenerate all Program project host configuration and include files, and
recompile your Program transaction applications.

14. On previous releases, if the SOAP Body of the response message in an imported
WSDL contained a single element that had data associated with it, the WebOut library
would generate an erroneous “Unexpected data” error when the XML response was
received. This has been corrected.

15. WebOut Web Service projects now support elements of type “anyType” in both the
request and response records.

 MGSWeb 3.12 Reference Manual Page 92

An “anyType” element is defined to be: an element declared in the WSDL with no defined
type or a type of “anyType”; an element whose type declared in the WSDL’s schema has
no type or a type of “anyType”; or, an element whose type declared in the WSDL’s
schema has a single child “any” element.

For “anyType” fields in the request (outbound) record, the WebOut library will move the
data from the client record to the request XML without translation – this allows the
application to provide raw XML that will get copied to the request XML. (It is up to the
application to ensure that the XML is valid – invalid XML in an “anyType” field can
cause the server to reject the request.)

For “anyType” fields in the response (inbound) record, the WebOut library will transfer
the element’s child XML (or the element’s data if the element has no child elements) from
the response XML to the field in the response record. It will be up to the application to
process the XML in the response record field. (Note that the copy of the XML is not a
“raw” copy; whitespace, namespaces and namespace prefixes are eliminated to make it
easier for the receiving application to scan the XML.)

The WSDL must be re-imported into WSUtility, the host configuration and include
files must be re-generated, and you must re-compile your applications for this
feature to work.

16. WSUtility can now handle the “attributeGroup” element in an imported WSDL.

17. WebIn now supports Program project transaction names up to 150 characters long.

18. WSUtility now uses a 90 second timeout (up from 30 seconds) when uploading host
configuration and include files to the MCP host.

19. The WebOut library now converts elements of type "decimal" to a REAL in the
COBOL record (previous release incorrectly converted “decimal” elements to an integer
field in the COBOL record).

I.8 Release 3.03

1. The WebOut library now supports records up to one megabyte (up from 64KB on
previous releases).

2. WebIn now supports sending stream data in the response record (the base64, stream
and base64Stream field types are now supported in the response record). For the stream
and base64Stream field types, the application must insert the title of a stream file into the
field; WebIn will then insert the contents of the file into the response XML data.

3. Finer trace granularity has been implemented - you can now turn tracing on for a
specific WebIn or WebOut project. This is in addition to the global trace toggle. Also,
when you turn tracing on using v3.03 WSUtility, only transactions against the currently
loaded project will be traced. In addition, the meaning of the TRANSACTION-TRACE

 MGSWeb 3.12 Reference Manual Page 93

item in the WebOut library’s parameter record has changed; if this field is set to a non-
zero value, the transaction will be traced to the WEBSERVICES/LOG file, not to the
RESULT-STRING parameter.

4. The "anyAttribute" element is now supported when importing a WSDL. This allows
applications to supply raw XML attributes to an element if the element is defined in the
WSDL with an "anyAttribute" declaration.

5. On previous release of the WebOut library, if an integer or REAL field in the request
record contained either all spaces or a zero value, the corresponding element in the
generated XML did not include the value (for example, the XML for a field named
“fieldOne” that contained a zero value would be “<fieldOne />”). On this release, zero
values in numeric fields are included in the generated XML (that is,
“<fieldOne>0</fieldOne>”). (The behavior for integer or REAL fields that contain all
spaces has not changed – no value will be included in the XML.)

6. Both WebIn and WebOut now generate signed integer fields – previous releases
generated “PIC 9” COBOL fields for all integer types, but this release generates “PIC S9”
fields in both the request and response records.

7. The processing of the WEBSERVICES/PARAM file has been moved from the
WEBSERVICES/DRIVER program to the WEBSERVICES/INTERFACE library. This
allows the WebOut library to access values set in the parameter file. This fixes the
problem from previous releases where, if the trace option was enabled in the parameter
file but WEBSERVICES/DRIVER was not running, the WebOut library would not
generate tracing information.

8. Stream files received by WebIn into the WEBSERVICES/TEMPFILES/= directory
(generated by fields with the stream or base64Stream field types) will now be
automatically removed by WEBSERVICES/DRIVER 15 minutes after they are last
accessed by the receiving application. A new parameter file command,
“TEMPFILES_LIFE = <minutes>” allows you to control how long the stream files remain
on disk (setting this command to zero disables the automatic removal of the files).

9. WSUtility has been enhanced to prevent items from being “hidden” in the generated
COBOL records. An item would be hidden (that is, not accessible) if its name matches
the name of a child of one of the group items that contain it. If an item would be hidden,
WSUtility now adds a number to the end of the COBOL name to make it unique.

10. WebOut projects support for the “minOccurs” WSDL option has been implemented.
On previous releases, WebOut projects always included all XML elements, even if they
were empty (all spaces). On this release, WebOut projects now only includes empty
elements if their “minOccurs” value is greater than zero. For arrays of elements, WebOut
projects will now include at least the “minOccurs” number of elements; it will include
more, up the OCCURS value set in WSUtility, if they are non-blank.

11. A new WEBSERVICES/PARAM file command, ALLOW_UPLOADS, allows you to
prevent WSUtility from uploading new host configuration and include files to a host.

 MGSWeb 3.12 Reference Manual Page 94

I.9 Release 3.04

1. MGSWeb now supports different character sets; previous releases only supported the
native MCP EBCDIC character set. (Only 8-bit MCP character sets are supported; multi-
byte character sets, like ASTUTL, are not supported by MGSWeb.) A new parameter file
command, CCSNUMBER, has been implemented to specify an alternate character set
number. The character set numbers are listed under the EXTMODE attribute in the File
Attributes Programming Reference Manual (not all character sets listed are supported).

2. The DRIVER program now validates that WSUtility’s version matches its own when
uploading host configuration and include files.

3. A new parameter file command, ENCODING, supports setting the XML “encoding”
value; the default encoding is “utf-8”. The ENCODING value also used in the WebOut
library’s "Content-Type" HTTP header (for example, "Content-Type: text/xml;
charset=<encoding>").

4. DMSII field names are now converted to more friendly XML names on this release
(rather than all uppercase COBOL-like names). For example, the DMSII field name
“FIELD-ONE” would be converted to the XML field name “fieldOne”.

5. The “mcpElapsed” field value for WebIn transactions has been enhanced to include the
time it takes to build the response XML.

6. For rpc/encoded operations, it was possible for a WebOut project to include multiple
instances of the XSI and SOAP Encoding (soapEnc) namespaces in the <Envelope>
element of the generated SOAP envelope. This has been corrected.

I.10 Release 3.05

1. MGSWeb has been enhanced to support IPv6 networks. IPv4 and IPv6 are supported
for both inbound and outbound transactions, as well as by WSUtility for uploading host
configuration files and include files to the MCP system. (MCP systems support IPv6
starting with the 53.1 system release.)

2. If an inbound Program transaction timed out, it was possible for
WEBSERVICES/DRIVER to get an INVALID OPERAND fault @ 38314200 or an
INVALID INDEX fault @ 00033700 or 00142200. This has been corrected.

3. WSUtility has been enhanced to handle namespaces declared in the same node as they
are used when reading a WSDL file (for WebOut projects).

4. WSUtility and the host software have been enhanced to properly handle empty
<message> elements (that is, messages that have no <part> child elements) when
importing a WSDL for WebOut projects. Previous version of WSUtility would treat
operations with empty input or output messages as invalid.

 MGSWeb 3.12 Reference Manual Page 95

5. WSUtility now displays WebOut project operations that have invalid COBOL names in
red in the Navigation tree. This makes it easier to find the COBOL names you need to fix
before you can generate a host configuration file.

6. WebOut projects now set the length of SOAP arrays in rcp/encoded requests to the
actual number of non-blank array elements in the COBOL record, rather than setting the
length to the array length set via WSUtility and including null array elements to fill out the
array. This change is because some web servers can not handle null SOAP array elements
with the “xsi:nil” attribute set to true.

7. Because some web servers use an HTTP result code of 500 to return SOAP faults, the
WebOut library has been enhanced to process the response XML data when the HTP
result code is either 200 (OK) or 500 (Internal Server Error).

I.11 Release 3.06

1. The WebOut library has been enhanced to automatically handle “base64Binary” fields.
Each element in an imported WSDL that is defined as base64Binary can have its field type
set to either “base64” or “base64Stream” (the default type is “base64”).

The data in a request COBOL record for “base64” fields will be automatically translated
by the WebOut library to base64 before inserting it in the request XML, and “base64”
fields in a response record will be automatically translated from bas64 before inserting it
in the COBOL response record.

If a request record field’s type is set to “base64Stream”, the application should store the
name of a stream file in the field; the WebOut library will read the data from the file,
translate it to base64, and insert the base64 data into the request XML. For response fields
that are “base64Stream”, the WebOut library will translate the data from the response
XML from base64, write it to a stream file, and store the title of the stream file in the field
in the response record.

2. WebIn no longer requires the “mcpType” attribute for “base64,” “base64Stream” and
“stream” fields. This attribute will not be included in generated WSDLs, and it will be
ignored if included in the request XML. WebIn now uses another mechanism to detect
“base64,” “stream” and “base64Stream” fields in the request XML.

3. WSUtility now sorts the list of operations for each port when importing a WSDL, to
make it easier to find a given operation when the WSDL contains a lot of them.

4. A new WebOut project parameter record field, HTTP-HEADERS, has been
implemented. This 150-character field allows callers of the WebOut library to specify
custom HTTP headers to be added to the outbound request.

5. It was possible for a WebIn WORKER stack to get an “INVALID OPERATOR” fault
after one or more Program transactions timed out. This has been corrected.

 MGSWeb 3.12 Reference Manual Page 96

6. WSUtility has been enhanced to correctly import a WSDL that contains a request record
that has multiple normal child elements and an “any” child element. Previous releases
would discard the “any” child element in this case; the new release adds a “REQ-
VALUE” field to the end of the record so the application can specify raw XML to replace
the “any” element. Note that this feature is not allowed in response records.

7. It was possible for WSUtility to get a “Range check error” exception when opening an
existing Program project file. This has been corrected.

8. If a “base64,” “stream” or “base64Stream” field occurred in a transaction in a Program
project, and that transaction also had multiple SOAP header elements, all attempts to call
that transaction resulted in an “Unknown transaction name” SOAP fault. This has been
corrected. Also, “base64,” “stream” and “base64stream” fields are not allowed in SOAP
header fields; WSUtility has been updated prevent these field types in the SOAP header.

9. The maximum XML elements MGSWeb can handle in a single document has been
increased to 8,192 elements.

10. WSUtility now displays the build number from the version information stored in the
code file when it is compiled.

I.12 Release 3.07

1. It was possible for the WebOut library to leave an internal lock within the socket
structure block in a locked state if the call was timed out and the destination server
location was a domain name (not an IP address). This would cause any subsequent use of
the same instance of the socket structure block to also time out. This has been corrected.

I.13 Release 3.08

1. MGSWeb Authentications Extensions has been implemented as part of the MGSWeb
WS-Out and HTTP-Out capabilities. Support is now provided for both the Windows
NTLM and HTTP Digest authentication schemes (this is in addition to the existing HTTP
Basic authentication capability already implemented in release 2.01).

The WebOut library will now use the “WWW-Authenticate” HTTP headers returned by
the web server to automatically decide which authentication scheme to use. If the server
supports multiple schemes, the WebOut library will first use Basic, then NTLM, and lastly
Digest authentication. See Section 10.4, Parameter Record Fields, SERVER-
USERNAME and SERVER-PASSWORD fields for more information about this feature.

 MGSWeb 3.12 Reference Manual Page 97

I.14 Release 3.09

1. It was possible for applications to hang inside the WEBOUT library if a fault occurred
while installing a new or updated web service host configuration file. This has been
corrected.

2. It was possible for the DRIVER program to fault with an INTEGER OVERFLOW error
@ 56000000 when using the Atlas web server. This has been corrected.

3. MGSWeb now allows uppercase “TRUE” and “FALSE” as synonyms for “true” and
“false” in XML documents.

I.15 Release 3.10

1. If the COMS send failed when RESPONDER was attempting to send the request to the
WebIn application, it was possible for the response buffer that was returned to DRIVER to
be formatted incorrectly. This would cause a DRIVER WORKER fault. This has been
corrected.

2. When a request timed out because the WebIn application did not respond within the
“request time out” value (which is 30 seconds by default), the associated INTERFACE
library request buffer was not deallocated. This would cause the INTERFACE library’s in-
use memory to grow over time. This has been corrected.

3. The INTERFACE library has been enhanced to better detect if a WebIn application did
not copy the first six bytes of the request buffer to the response buffer before sending it
back to the RESPONDER program. Also, if the global tracing option is enabled, the
INTERFACE library will now trace its activity to the WEBSERVICES log file.

4. This host release works with v3.09 of WSUtility.

5. WebIn now logs all error messages, and the messages have been enhanced to include
the project name and the specific operation that failed.

6. Due to a scanner bug in WEBSERVICES/DRIVER’s AX handler, you could not enable
tracing for a project whose name contained a hyphen. This has been corrected.

7. Use the patched (Unisys expression handling bug) MCP 14 compiler for software
generation.

I.16 Release 3.11

1. The Weather sample web service had moved so the URL has been updated in the
project and the host file reloaded.

 MGSWeb 3.12 Reference Manual Page 98

2. When using a client-side SSL key and a non-zero TRANSACTION-TIMEOUT value,
it was possible to get a SSL error when calling the WebOut INVOKE procedure. This was
caused by the worker stack that implements the timeout logic running under the usercode
of a previous caller when attempting to use the supplied SSL key. This has been corrected;
the worker will now change its usercode to the caller’s usercode before using the SSL key
in this situation.

3. A number of "library attribute error" messages, generated on each WebOut INVOKE
call, were caused by WEBSERVICES/LIBRARY improperly handling LINKLIBRARY
results other than 1. This has been fixed.

I.17 Release 3.12

1. A new feature has been added to MGSWeb to allow sites to control which users can run
WSUtility. Using the new USER_LIST parameter file command, a site can list the
Windows user accounts that are allowed to run WSUtility. If the USER_LIST command is
not in the parameter file, any user can run WSUtility; if a USER_LIST command is added
to the parameter file, only the listed users can run WSUtility.

The syntax of the new command is: “USER_LIST = <Windows user account
list>;”, where <Windows user account list> is one or more Windows user
accounts, separated by commas. Each Window user account name is limited to 24
characters, and the list is limited to 20 user accounts.

2. Additional detailed diagnostics have been added to the NTLMv1 processing routines.
Debug code was added to the HTTP NTLM procedures. If one puts a value greater than
zero in the TRANSACTION-TRACE field of the MGSWeb web services call parameter
record, the NTLM data will be written to a separate WSBD print file.

3. A problem exists that when the COMS program, that is handling the inbound program
transactions for an MGSWeb web service, does not send a response back to the
RESPONDER then the program DRIVER can hang waiting for the transactions to
complete while doing a host configuration file reload. This has been corrected.

4. The WEBOut facility has been enhanced to optionally support Self-Signed certificates
over an SSL connection. For security reasons, when connecting to an SSL server, whose
certificate is signed by a Certificate Authority running on that exact same server, the
default behavior is to reject that connection. Unisys, and now MGSWeb, support an
option that will ignore the fact that the received SSL certificate is self-signed and, if all
other conditions are valid, the connection will be allowed.

The syntax ALLOW_SELF_SIGNED = { TRUE | FALSE } has been added to the
WEBSERVICES/PARAM file as a systemwide control of this feature for all outbound
SSL connections.

 MGSWeb 3.12 Reference Manual Page 99

5. Web-Out now has support for accepting session cookies for a persistent HTTP
connection. Via the HTTP protocol, a server can send Web-Out cookie information and
Web-Out will now present the cookie information on all subsequent web services calls
over that persistent connection. This facilitates servers that use a security token cookie, on
persistent HTTP connections, to avoid security re-validation for every subsequent web
service call over that connection. Previously, servers would have to have an HTTP re-
logon before every web services call was done. This feature does not affect non-persistent
(single web services call) HTTP connections.

6. When an application uses one out-bound project (Web-Out or HTTP-Out) and then
calls a second out-bound project with a shorter URL specification, the URL field is not
cleared before the new URL is loaded in from the WSUtility project, which results in an
invalid URL specification being used for the TCP/IP connect. This problem has been
corrected.

	1. Overview
	1.1 WS-In Inbound Web Services
	1.2 WS-Out and HTTP-Out Outbound Web Services
	1.3 MGSWeb Authentication Extensions

	2. Software Installation
	2.1 Documentation
	2.2 Windows PC Installation
	2.3 Host Installation
	2.4 Host License Key
	2.5 SSL Considerations
	2.5.1 Inbound SSL Transactions
	2.5.2 Outbound SSL Transactions

	3. Host Configuration
	3.1 Configuring the Web Services Server
	3.2 Configuring Unisys’ Web Transaction Server (ATLAS)
	3.3 Configuring DRIVER
	3.4 Configuring the Responder Program
	3.5 Data Translation and Character Sets

	4. Starting the Host Software
	5. Host Software Operation
	5.1 SERVER
	5.2 DRIVER
	5.3 PSH
	5.4 Host Tracing

	6. Deploying WS-In Web Services
	6.1 Station Transactions
	6.1.1 Creating a SOMS Project
	6.1.2 Navigation Tree
	6.1.3 Project Properties Page
	6.1.4 Screen Properties Page
	6.1.5 Screen Image Page
	6.1.6 Freeform Restrictions Page
	6.1.7 File Generation
	6.1.8 Testing

	6.2 Program Transactions
	6.2.1 Navigation Tree
	6.2.2 Program Properties Page
	6.2.3 Transaction Properties Page
	6.2.4 Special Field Types
	6.2.5 File Generation
	6.2.6 Testing

	6.3 Database Transactions
	6.3.1 Navigation Tree
	6.3.2 Database Properties Page
	6.3.3 Dataset Properties Page
	6.3.4 File Generation
	6.3.5 Testing

	7. Additional WSUtility Features
	7.1 Host Trace Control
	7.2 ASP Project Details

	8. Accessing WS-In Web Services from Other Systems
	8.1 Program Transaction MCP Header
	8.1.1 Request Record MCP Header Fields
	8.1.2 Response Record MCP Header Field
	8.1.3 Important Notes

	8.2 Stateless and Stateful Transactions
	8.2.1 Station Transactions
	8.2.2 Program Transactions
	8.2.3 Database Transactions

	8.3 WSDL Details
	8.3.1 Allocate and Deallocate Operations
	8.3.2 mcpElapsed, mcpStation, and mcpDatabase Fields

	9. Configuring WS-Out and HTTP-Out Web Services
	9.1 Running WSUtility
	9.2 WSDL-Based Web Services
	9.2.1 Loading the WSDL File
	9.2.2 Service Properties
	9.2.3 Disabling Web Service Operations
	9.2.4 Request and Response Records
	9.2.5 Parameter Records
	9.2.6 WS-Out SSL Operation
	9.2.7 Complex XML Schemas

	9.3 Non-WSDL-Based Web Services
	9.3.1 Service Properties
	9.3.2 Operations
	9.3.3 Request and Response Records
	9.3.4 Parameter Records
	9.3.5 HTTP-Out SSL Operation

	9.4 Generating the Host Configuration File
	9.5 Generating the COBOL “COPY library”

	10. Using WS-Out or HTTP-Out to Call a Web Service
	10.1 COBOL Syntax
	10.2 ALGOL Syntax
	10.3 INVOKE Procedure Parameters
	10.4 Parameter Record Fields
	10.5 INVOKE Result Values
	10.6 Host Tracing

	11. Web Services for Unisys MCP Sample Programs
	11.1 WS-In Sample Program
	11.1.1 Compiling the Sample COMS Program
	11.1.2 Configuring the Sample COMS Program
	11.1.3 Running the WEBINSAMPLE Visual Basic Program
	11.1.4 Deleting the COMS Sample Program

	11.2 WS-Out Sample Program
	11.2.1 Compiling the Sample Program
	11.2.2 Running the Sample Program

	11.3 Included Sample Files

	Appendix I Release Notes
	I.1 Release 1.03
	I.2 Release 2.00
	I.3 Release 2.01
	I.4 Release 2.02
	I.5 Release 3.00
	I.6 Release 3.01
	I.7 Release 3.02
	I.8 Release 3.03
	I.9 Release 3.04
	I.10 Release 3.05
	I.11 Release 3.06
	I.12 Release 3.07
	I.13 Release 3.08
	I.14 Release 3.09
	I.15 Release 3.10
	I.16 Release 3.11
	I.17 Release 3.12

