Server Consolidation or Server Replacement? Saving Money and Delivering Performance

UNITE Conference Philadelphia, PA 19-22 September 2004

Session MCP4055 Guy Bonney

Agenda

Background

Replace or Consolidate?

- Cost versus Performance
- Analysis Methodology
- Examples

MGS, Inc.

- Software Engineering, Product Development & Professional Services firm founded in 1986
- We provide products and services to solve business problems:
 - Software Engineering Services
 - Professional Services
 - Management Support Services
 - Consulting and Technical Services
 - Application Development Services
 - Training Services
 - Product Development
 - ClearPath MCP System Support

Why Listen to MGS?

- Over 30 years experience in computer solutions
- Experts in making computer solutions both reliable and efficient
- Experienced in a variety of hardware/software technologies
- Experts in operating environment design and management
- Experts in data communications
- Experienced in solutions requiring multiple, diverse platforms
- Expert on ClearPath MCP, Windows, and UNIX platforms.

MGS Software Products

- MGS Web Services for ClearPath MCP
- File Manager for ClearPath MCP(FMA)
- SightLineTM Performance Analyzer
- SightLine Capacity Manager
- SightLine Workload Analyzer
- HVFAX High Volume Facsimile Delivery System
- Proof of Correctness System (PCS)

MGS Contact Information

Contact the author at:

MGS, Inc. 10901 Trade Road Richmond, Va 23236 804-379-0230 www.mgsinc.com

Background

- Server replacement drivers
 - Change in processing requirements
 - Decreasing reliability
 - Increased operational costs
 - Standardize equipment
 - Re-licensing software
- Consolidation drivers
 - Cost reduction
 - Standardization
 - Server replacement
 - Disaster Recovery

Replacement

- Single server case
 - Change capacity
 - Reduce cost of ownership
 - Add a server
- Multiple server case
 - Distinct functions on different servers (production, development, QA, etc.)
 - Security issues
 - Emergency Recovery (ER) needs
 - Same or different locations
 - Disaster Recovery (DR) needs

Sizing Techniques

 Weather Rock Technique Vendor Proposal approach SWAG Utilization based approach Analyze total CPU, IO, Memory Performance/Capacity Analysis Workload level analysis Growth and trend projection Capacity Planning Model business processing requirements

Cost Reduction Objectives

- Capital Costs
 - Hardware
 - Software licenses
- Operating Costs
 - Fixed capacity
 - Variable capacity impact (metering)
- Infrastructure Costs
 - Network and Network Management
 - Support framework
 - Staff
 - Tools

Performance Improvement

- Reduce transaction/batch time
- Maintain service levels with less capacity
- Increase throughput maintain service levels

 All imply an increase in processing capacity (CPU, IO, Memory) – perhaps at reduced cost.

Emergency Recovery

- Same system (temporary capacity boost)
- Alternate system
 - Transfer workload to development
 - May require capacity boost
- Capacity boost based on Capacity On Demand facilities
 - Annual ER/DR keys

Disaster Recovery

- Alternate system location
- System sized to
 - support single platform
 - workloads from multiple systems
- Disaster Recovery keys available based on Capacity on Demand capability.
- Note that ES7000 architecture for Libra and Dorado have ER/DR advantages

ES7000 Advantage for ER/DR

ER failover:

- production and development/test MCP images in same box
- Windows production/test
- DR System
 - Size MCP image for single or multiple systems backup
 - Multiple large Windows images possible
 - Storage subsystem or SAN is a help

ER/DR Business Requirement

- Determine what is needed to support minimum business needs
 How much downtime can be sustained before business at risk?
 How much before government
 - service delivery failure impacts citizens?
- What's the value of risk mitigation?

Decision Making Process

- Identify and prioritize the goals
 - IT goals may be different from business goals
- Determine the capacity and infrastructure needed
- Quantify the costs versus value
- Prepare and present the proposal to management

Methodology for Sizing

- Establish baseline
 - Performance
 - Capacity usage
 - Workload volume
- Track historical data
- Perform trend analysis
 - Capacity usage
 - Workload volume
 - Performance
- Performance:
 - Keep capacity at safe level
 - Project performance using operational analysis techniques
 - Model for best results

Examples

- Most of the following analysis was done using SightLineTM Products, including Expert Advisor / Vision, Capacity Manager and WorkLoad Analyzer.
- ExcelTM was used for some projection models and resultant charts.

Single System Case

 Analyze MCP system supporting banking applications
 Determine if upgrade is feasible or if system replacement required.

Overall CPU Demand

CPU on a Busy Day

Workload Resource Demand

 Decompose utilization of interest to individual workloads and transactions

Processor

MCP

User

Available

Workload #1 CPU
 Workload #2 CPU

 Transaction
 Type #1 CPU
 Transaction
 Type #2 CPU

Workload Decomposition

CPU Contention Issue

Memory Usage by Workload

I/O Traffic Rates

I/O Transfer Rates

COMS Transaction Volume

COMS Response Time - PRM

COMS Response Time - EBB

Disk Subsystem Optimization

Family	IO/Sec	⊟pase Time	Юз	Service Times	Total IOSec	Assumes E	IO Elapse Time Nal Channel Full Optimization	
В	47.04	9060	426182.4	0.01	4261.82	2131 Seconds	> 35 Mnutes 31 Seconds	
с	52.357	9060	474354.42	0.011	5217.90	2609 Seconds	>43 Mnutes 29 Seconds	Cur
D	36.731	9060	332782.86	0.011	3660.61	1830 Seconds	> 30 Mnutes 30 Seconds	rent
E	7.483	9060	67795.98	0.007	474.57	237 Seconds	>3 Mnutes 57 Seconds	
В	47.04	9060	426182.4	0.005	2130.91	1065 Seconds	> 17 Mnutes 45 Seconds	Шт
С	52.357	9060	474354.42	0.006	2846.13	1423 Seconds	> 23 Mnutes 43 Seconds	stim
D	36.731	9060	332782.86	0.006	1996.70	998 Seconds	> 16 Mnutes 38 Seconds	nateo
E	7.483	9060	67795.98	0.004	271.18	136 Seconds	>2 Mnutes 16 Seconds	ant d

Business Volume History

CPU Growth Projection

CPU Projection by System

Multiple System Case

- Multiple aging MCP servers must be replaced.
- Consider merging into single MCP image.
- Consider that a Disaster Recovery site will be established.

Workload Merger - CPU

Batch Cycle Table

	_	CPU Secs	ReadyQ Secs	Other Delay	Elapse IO Sec
Pre-Batch Prep		5100	1083	0	11757
Critical Nightly Batch		10563	2425	614	16993
Post Nightly Batch		17920	1777	2928	26556
	Totals	33583	5286	3541	55305

Batch Cycle Model

On-Line Workload Projection

Workload Projection

Consolidated Workload	ds Peak Con	nposite (bas	ed on NX6	332-PL5):			
		Dec-02	Dec-03	Dec-04	Dec-05	Dec-06	Dec-07
Sys-1 User Growth Rat	20%	28%	28%	11%	11%	11%	
Sys-2 User Growth Rat	20%	10%	10%	10%	10%	10%	
Sys-3 User Growth Rat	20%	15%	15%	11%	11%	11%	
	Aug-02	Dec-02	Dec-03	Dec-04	Dec-05	Dec-06	Dec-07
CPU MCP %	Aug-02 5.0	Dec-02 5.0	Dec-03 5.0	Dec-04 5.0	Dec-05 5.0	Dec-06 5.0	Dec-07 5.0
CPU MCP % Sys-1 CPU User %	Aug-02 5.0 41.0	Dec-02 5.0 49.2	Dec-03 5.0 63.0	Dec-04 5.0 80.6	Dec-05 5.0 89.5	Dec-06 5.0 99.3	Dec-07 5.0 110.2
CPU MCP % Sys-1 CPU User % Sys-2 CPU User %	Aug-02 5.0 41.0 12.3	Dec-02 5.0 49.2 14.8	Dec-03 5.0 63.0 16.2	Dec-04 5.0 80.6 17.9	Dec-05 5.0 89.5 19.6	Dec-06 5.0 99.3 21.6	Dec-07 5.0 110.2 23.8
CPU MCP % Sys-1 CPU User % Sys-2 CPU User % Sys-3 CPU User %	Aug-02 5.0 41.0 12.3 11.5	Dec-02 5.0 49.2 14.8 13.8	Dec-03 5.0 63.0 16.2 15.9	Dec-04 5.0 80.6 17.9 18.3	Dec-05 5.0 89.5 19.6 20.3	Dec-06 5.0 99.3 21.6 22.5	Dec-07 5.0 110.2 23.8 25.0
CPU MCP % Sys-1 CPU User % Sys-2 CPU User % Sys-3 CPU User %	Aug-02 5.0 41.0 12.3 11.5	Dec-02 5.0 49.2 14.8 13.8	Dec-03 5.0 63.0 16.2 15.9	Dec-04 5.0 80.6 17.9 18.3	Dec-05 5.0 89.5 19.6 20.3	Dec-06 5.0 99.3 21.6 22.5	Dec-07 5.0 110.2 23.8 25.0

RPM Growth Projection

RPM vs Capacity

RPM Capacity Plan

The Resulting Plan

- Install Libra Model 180 at capacity level CSS78017-39 offering 3800 RPM useable Now.
- Purchase Capacity-on-Demand increments as needed in 2004
 - Upgrade to CSS78017-52 (5000 RPM useable) in 2005 if growth projections hold into mid 2004.

Summary

 We discussed issues and considerations for replacing versus consolidating servers.

 We reviewed a methodology for sizing server replacements or upgrades.

We reviewed a single server case.
We reviewed a multiple server consolidation case.

Questions?

Thank you for your attention.

Are there any questions?

Note that this presentation, <u>including</u> <u>a Windows server consolidation</u> case will be available for download next week at: www.mgsinc.com

