
Session MCP/OS/MTP 4066
2:45–3:45pm, Halloween 2017

Web Services Are Always
Cloud Ready!

Michael Recant
MGS, Inc.

Session MCP4046
2:00pm – 3:00pm
Wednesday, November 18, 2020

UNITE 2020
Annual Conference

1

 Web Services (generic) Goal
• Make network program-to-program

exchanges as easy as browsing the Web

Client
Program

Web
Service

(generic)The Cloud

2

Overview

2

3

Overview
 The Web Services (generic) concept

contains extremely powerful elements

 “Loose Coupling” between provider
and consumer

 Abstracts out business functionality

 Leverage existing business
functionality

The Web Services (generic) concept contains extremely powerful elements:

Simple, well-defined, standards-based interfaces

Technology independent implementation

“Loose Coupling” between provider and consumer

Anonymous client

Flexible data content

Asynchronous

Abstracts out business functionality

Creates machine (technology) independent functionality

Indirect reference to a business service

Leverage existing business functionality

Rewrites/Redesigns are expensive

Placing a Web Services (generic) envelope around existing
functionality is relatively inexpensive

Preserves investment in known, reliable business solutions

3

4

Overview

Application
#1

Silo

Silo

Silo

Silo

Application
#2

Legacy

Legacy

Legacy

Legacy

Application
#3

New App

Application
#4

New App

Users Users

Silo

Silo

Silo

Silo

UsersUsers

Import/
Export

Import/
Export

Traditional Architecture

Individual Application Silos

Data tied to an individual application

Batch transfer from Silo to Silo

User tied to a specific application

4

5

Overview

Business Application #1 Business Application #2

Service #1

Silo App

Silo App

Silo App

Silo App

Service #2

Legacy App

Legacy App

Legacy App

Legacy App

Service #3

New App

Service #4

Silo App

Silo App

Silo App

Silo App
New App

Users Users Users Users Users

SOA

Services Oriented Architecture (SOA)

Componentize Enterprise business functions

Service is a “black box” for consumers

Encapsulate existing business functions for easier access

IT Functionality now available as a set of objects that can be mixed
and matched as needed

Application development done by architecting service consumers

5

6

Overview
 Web Service (generic) Characteristics

• Client-Server Architecture

• Stateless Transactions

• Layered System
 Client can be directly connected or have

communication routed

 Client is unaware or layers

• Loose Coupling
 Client tech not tied to server tech

 Both side can evolve independently

• Built on proven Internet communications
standards

Built on proven Internet communications standards

Communication Transports:

TCP/IP – Transmission Control Protocol /
Internet Protocol

TLS – Transport Layer Security
(formerly SSL)

Communication Protocols:

HTTP - HyperText Transfer Protocol

SOAP - Simple Object Access Protocol

REST - Representational State Transfer

Payload Data Representations:

Text - plain text

XML - eXtensible Markup Language

JSON - JavaScript Object Notation

6

Web
Service

(generic)

7

Technology

Client
Program

Server
Program

Software IDE
Client Development

Software IDE
Server Development

Service
Description

APIs Supported by software IDEs

APIs Supported by software IDEs

Automatic creation of Web Services objects

Web Services Server object support

Web Services Client object support

Included as part of the application framework

Microsoft .NET

Oracle/Sun JAVA

Unisys Agile Business Suite

Unisys ePortal

Unisys MCP WEBAPPSUPPORT

MGS-Web

7

8

Technology

<message name="WSTEST_SCRN01">
<part name="Trancode" type="xsd:string" />
<part name="Input_data" type="xsd:string" />

</message>
<message name="WSTEST_SCRN01Response">

<part name="Trancode" type="xsd:string" />
<part name="Input_data" type="xsd:string" />
<part name="statusLine" type="xsd:string" />

</message>

<service name="COMSWebServices">
<documentation>Access COMS applications via Web Services
</documentation>

<port name="WSTEST" binding="wsdl:WSTESTHttpBinding">
<soap:addresslocation=

"http://laptop1mcp/COMSWebServices/" />
</port>

</service>

Description File (WSDL)

Service Description

User Defined

HTTP payload is typically user defined

GET (payload part of the URI)

POST (payload in the HTTP request body)

WSDL

Web Services Description Language

Specifies:

The protocol (typically HTTP)

The operation

An XML encoded SOAP request

An XML encoded SOAP response

RSDL, Swagger, etc

RESTful API Description Languages

JSON or XML encoding

8

9

Technology – HTTP vs XML vs JSON Encoding

 HTTP Query
• http://xyz.com?Name=Mike&Email=mike@xyz.com

&Country=USA

 XML Encoding
<Person>

<ID>1</ID>
<Name>M Vaqqas</Name>
<Email>m.vaqqas@gmail.com</Email>
<Country>India</Country>

</Person>

 JSON Encoding
{

"ID": "1",
"Name": "M Vaqqas",
"Email": "m.vaqqas@gmail.com",
"Country": "India"

}

XML Message Payload Example

SOAP Request:
<soap:Envelope>

<soap:Body>
<tns:WSTEST_SCRN01>

<Trancode>SCRN01</Trancode>
<InputData>lower case letters</InputData>

</tns:WSTEST_SCRN01>
</soap:Body>

</soap:Envelope>

SOAP Response:
<soap:Envelope>

<soap:Body>
<tns:WSTEST_SCRN01Response>

<Trancode>SCRN01</Trancode>
<InputData>LOWER CASE LETTERS</InputData>
<statusLine />

</tns:WSTEST_SCRN01Response>
</soap:Body>

</soap:Envelope>

9

10
Web Services Server

SOAP Response

Technology – Processing Example

Web Services Client

SOAP Request

Input Data

HTTP Request

Output Data

HTTP Response

Web Server

Process Request

Process Response

HTTP or HTTPS

Proprietary

Indicates
XML

Encoding

10

11

Technology – HTTP Transaction

 HTTP based Web Service
• Hypertext Transfer Protocol

• Core of Web Browser communications

• Can also be used for “web service” transaction
processing
 GET method

GET /test/form.php?name1=value1&name2=value2

 POST method

POST /test/form.php HTTP/1.1
Host: w3schools.com
name1=value1&name2=value2

• Payload format is user application defined

• Can be HTTP form elements, XML, JSON, etc

• Response format is user application defined

11

12

Technology – SOAP Transaction

 SOAP based Web Service
• HTTP used to encapsulate SOAP request

message (POST)
 SOAP operation

 SOAP headers

 SOAP body

• HTTP response encapsulates the SOAP
response

• SOAP request and response are XML
encoded

• WSDL defines the specific format of the
SOAP request/response for a given
operation

• Minimal use of HTTP control fields

12

13

Technology – RESTful Transaction

 REST based web service
• HTTP used to encapsulate REST request

message (GET or POST)
 REST operation

 REST headers (really HTTP headers)

 REST body

• HTTP response encapsulates the REST
response

• REST request and response are either
JSON or XML encoded

• REST request/response format may be
defined by a Service Description (may be
built into application)

• Often relies on HTTP control fields

13

14

 Non-Persistent Connection

Technology

Client Connect --------------->
<--------------- Server Accept

Client Request --------------->
<--------------- Server Response

Client Disconnect --------------->

Client Connect --------------->
<--------------- Server Accept

Client Request --------------->
<--------------- Server Response

Client Disconnect --------------->

Non-Persistent Connections

MCP TCP/IP connect/disconnect slows throughput

On close, TCP/IP port must “time wait” for TTL*2 seconds on most
systems

14

15

 Persistent Connection

Technology

Client Connect --------------->
<--------------- Server Accept

Client Request --------------->
<--------------- Server Response

Client Request --------------->
<--------------- Server Response

Client Request --------------->
<--------------- Server Response

Client Disconnect --------------->

Persistent Connections

Most servers default to persistent HTTP connections

- Connection:Keepalive setting

Client then controls persistence

Persistence provides a 4 to 50 times throughput increase

15

16

 Piplining Connection

Technology

Client Connect --------------->
<--------------- Server Accept

Client Request --------------->
Client Request --------------->
Client Request --------------->

<--------------- Server Response
<--------------- Server Response
<--------------- Server Response

Client Disconnect --------------->

Pipelining

Requires a persistent connection

Multiple requests are sent without waiting for responses

Responses return in send-order

Most web servers (including ATLAS) support this

Use controlled by whether Client application is coded to take
advantage of this

16

17

Security – Overview

 Digital security has three parts:
• Identification

 Authentication
 Digital signature

• Encryption
• Journaling

 Web Services (generic) moves
security considerations to a different
place
• May not be at the user’s interface point
• Often a machine-to-machine exchange
• The “other” machine may not be trusted

 SOA changes the security landscape

17

18

Security – Overview

Business Application #1 Business Application #2

Service #1

Silo App

Silo App

Silo App

Silo App

Service #2

Legacy App

Legacy App

Legacy App

Legacy App

Service #3

New App

Service #4

Silo App

Silo App

Silo App

Silo App
New App

Users Users Users Users Users

SOA

18

19

Security – Overview

 Web Services (generic) built on
HTTP
• Hence security considerations are similar

for all three:
 HTTP

 SOAP

 REST

• Need for connection encryption

• Need for message or session
authentication

• HTTP authentication limited so additional
authentication strategies may be needed

19

20

Security – Overview

 The challenge is controlling security
at different levels and different ways
• TLS/SSL (encryption)

• HTTP Logon (authentication)

• SOAP/REST Headers (authentication)

• Actual call to logon (authentication)

• SOAP WS-Security
(authentication, signature, encryption)

20

21

Security – Transport

 Transport Layer Security (TLS)
• TLS similar but more robust than SSL

• TLS – Authenticates server
 Get certificate from Server

 Validate certificate from a
trusted Certificate Authority

• Two way TLS
 Client Authenticates server

 Server Authenticates client

• Encryption, provided by the certificate
keys, is transparent to application

• Application must get/supply
authentication info through an external
interface

21

22

Security – HTTP Logon

 HTTP Logon
• Logon required for a specific virtual

directory

• Uses HTTP AUTHORIZATION header

• BASIC uses a Base64 exchange so
SSL/TLS is required for secure
communications

• DIGEST uses MD5 encrypted exchange

• NTLM provides username/pw encryption
and is non re-playable

• No data encryption

• Application must get/supply
authentication info through an external
interface

22

23

Security – SOAP/REST Headers

 SOAP Header Example
<Envelope>

<Header>
<ABECHeader xmlns="service.abec.com">
<MessageData>

<MessageID>568425287</MessageID>
</MessageData>
<UserAuthorization>

<UserName>MS0281331</UserName>
<UserPassword>x@32!aX49#$&</UserPassword>

</UserAuthorization>
</ABECHeader>

</Header>
<Body>

..... SOAP body …..
</Body>

</Envelope>

SOAP/REST Headers

One must pre-acquire authentication information before the service
request call

The SOAP/REST message contains both a HEADER section as well
as a body

Authentication information can be provided in SOAP/REST HEADER
fields

TLS is still needed to encrypt HEADERs

Application must supply authentication info using special code by
setting the header fields

23

24

 Call to Logon

Security – Logon Transaction

Client Connect --------------->
<--------------- Server Accept

Logon Request --------------->
<--------------- Logon Response (token)

Client Request (token) --------------->
<--------------- Server Response

Client Request (token) --------------->
<--------------- Server Response

Client Request (token) --------------->
<--------------- Server Response

Client Disconnect --------------->

Call to Logon a session

One must pre-acquire authentication information (usercode/password)

An initial web services (generic) call is made for authentication

The response contains a token to be placed in the body of all
subsequent web services (generic) calls

Application must be “token” aware

TLS is still needed to encrypt dialogs

24

25

Security – WS-Security

 Specific to SOAP Web Services

 WS-Security (WSS)
• Originally developed by IBM, Microsoft,

VeriSign and Forum Systems

• Attach signature and encryption headers
to SOAP messages

• Provides end-to-end integrity for each
message

• Protocol uses SAML, Kerberos and x.509
certificates

• Requires application awareness

25

26

Security – Summary

 Security Solutions
• Will be dependent on the technology

used and the connection type

• Use a front-end http pass-thru processor
to do encryption (TLS), authentication
(back-end systems are trusted) and
journaling

• Note, the front-end processing may be on
the same system as the Web Service
(generic)

• Use TLS to obfuscate user/password
authentication and Web Service contents

• Have username/password aware
applications

26

Cloud – Overview of Cloud Services

 Available “Cloud” Services
• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

• Mobile Backend as a Service (MBaaS)

• Serverless Computing (transaction)

 Characteristics
• Flexibility

• Reduced Overhead

• Reliability/Security (?)

• Lower Maintenance & Low Cost

Characteristics

Agility (self service)

Location Independence (network access)

Scalability (pooled resources)

Reliability (security?)

Usage Reporting (measured service)

Low Maintenance & Low Cost

27

Cloud – Software as a Service (SaaS)

 Solutions provided over the
Internet

 Solution can be utilized by
customer without server or
application involvement
(data only)

 Examples
• DropBox (Doc Control)

• Salesforce.com (CRM)

• Quickbooks (Financials)

• Microsoft Dynamics 365

28

Cloud – Application Integration

 Avalara Sales Tax Service
• Cloud based SaaS for:

 Tax rate calculation

 Exempt certificate management

 Filing and returns

• Validates the address of where
the transaction is occurring

• Calculates taxes on a document
such as a sales order, sales
invoice, purchase order,
purchase invoice, or credit
memo.

29

Cloud – Application Integration

 OpenText Facsimile Service
• Cloud based SaaS for:

 Facsimile transmission

 Distribution lists

 Supports a variety of formats

 Provides result reports

• API to Send Facsimile

• API to check status

30

Cloud – Application Integration

 SaaS APIs are generally
“standards” based

 Mainframe Applications require
middleware Support:
• Communications

• XML/JSON construction and
parsing

• Conversion of flat COBOL data
structures to/from XML/JSON

31

Cloud – Application Integration

 No “native” Mainframe Solution

 Middleware Required (example)
• Hardware/Software

(ePortal, AB Suite)

• Software Only
(MCPJava, MGSWeb)

• Custom app development using
WEBAPPSUPPORT features
 HTTPCLIENT

 XMLPARSER

32

Cloud – Application Integration

 Example application code to call
the SaaS Web Service (generic)
COPY "WEBSERVICES/USERFILES/WEBOUT/SAAS-GETTOKEN".

MOVE SPACES TO REQ-RECORD.
MOVE SPACES TO RESP-RECORD.
MOVE “GETTOKEN” TO TRANCODE.
MOVE “SaaS Request Info” TO INPUTDATA.

CALL "INVOKE OF WEBSERVICES/LIBRARY"
USING SAASFUNCT-PARAM,

REQ-RECORD,
RESP-RECORD
RESULT-STRING

GIVING RESULT.

IF RESULT NOT EQUAL ZERO
DISPLAY "Error calling Web Service: “ RESULT-STRING

ELSE
DISPLAY “Output:” OUTPUTDATA,
DISPLAY “Status:” STATUSLINE.

33

Cloud – Application Integration

 SaaS can be accessed by
mainframe applications

 Application invokes middleware

 Middleware Processing
• Remap COBOL 01 Request to XML

• Format SOAP/JSON Request

• Add HTTP envelope

• Connect via SSL to SaaS server

• Send request, receive response

• Extract SOAP/JSON Response from
HTTP

• Remap XML to COBOL 01 Response

34

Cloud – Application Integration

 Many Software as a Service
Cloud Services are available
today

 Robust middleware exists to
allow mainframe applications to
directly access these services

 Substantial advantages in using
these services (eg. Sales tax
calculation by sale location)

Example Services:

Office Time (time tracking)

Sage One (accounting)

SalesForce

Docusign

Microsoft Office 365

Intuit QuickBooks

Intuit Online Payroll

Abukai Expenses (reporting/mgt)

Google Drive, SkyDrive

Microsoft Dynamics 365

35

Cloud – Application Integration

 Caveats
• Cloud Services are only as

reliable as their provider

• Once functionality leaves the
data center
 Costs may be reduced

 Control is lost

• Must be evaluated on an
application-by-application basis

• Security different for each
service

36

Additional Questions?

37

Michael S. Recant
VP Software Development

MGS, Inc.
11506 Allecingie Pkwy, Suite 2B
Richmond, VA 23235

Voice: (804)379-0230
Fax: (804)379-1299
Email: Mike.Recant@mgsinc.com
Web: www.mgsinc.com

37

38

38

UNITE 2020 Conference

Web Services Are Always
Cloud Ready!

This presentation is available on our WEB site
http://www.mgsinc.com/download.html

